Abstract

The design of compressor blades has been transformed by the advent of optimization algorithms, allowing designers to focus on finding the best optimization strategy for a desired application. However, transonic flow conditions on compressor blades still present considerable modeling challenges, even for a 2D blade section. This paper then focuses on the design of a new state-of-the-art compressor cascade for future test campaigns at the DLR’s Transonic Cascade Wind Tunnel (TGK). For this purpose, a review of the cascades previously tested at the TGK was performed to select a main reference with good efficiency at high loading. The data gathered also informed the optimization strategy applied with the DLR’s optimizer, AutoOpti. The process chain was evaluated with Reynolds Averaged Navier–Stokes CFD simulations using the DLR’s solver, TRACE. The optimization was set to minimize two objective functions: the first one focused on the efficiency at the design point, and the second one focused on the efficiency over the working range. The result is a Pareto front of cascades with a wide variety of design features with an efficiency improvement over the working range of about 24%. This improvement was achieved with a comparable aerodynamic loading. Further analyses were performed to select the “best” cascade for future test campaigns. The significant improvement obtained with respect to the reference and the wide variety of designs observed demonstrates that there is still much to be learned about blade design through optimization; even for 2D cascades and specially in transonic flow.

References

1.
John
,
A.
,
Shahpar
,
S.
, and
Qin
,
N.
,
2016
, “
Alleviation of Shock-Wave Effects on a Highly Loaded Axial Compressor Through Novel Blade Shaping
,”
Proceedings of the ASME Turbo Expo, Vol. 2A
,
Seoul, South Korea
,
June 13–17
.
2.
Shahpar
,
S.
,
2005
, “
SOPHY: An Integrated CFD Based Automatic Design Optimisation System
,”
ISABE, Vol. 5
,
Munich, Germany
,
Sept. 4–9
.
3.
Baert
,
L.
,
Beaucaire
,
P.
,
Leborgne
,
M.
,
Sainvitu
,
C.
, and
Lepot
,
I.
,
2017
, “
Tackling Highly Constrained Design Problems: Efficient Optimisation of a Highly Loaded Transonic Compressor
,”
Proceedings of the ASME Turbo Expo, Vol. 2C
,
Charlotte, NC
,
June 26–30
.
4.
Sainvitu
,
C.
,
Iliopoulou
,
V.
, and
Lepot
,
I.
,
2010
, “Global Optimization With Expensive Functions—Sample Turbomachinery Design Application,”
Recent Advances in Optimization and Its Applications in Engineering
,
Springer
,
New York
.
5.
Benini
,
E.
,
2004
, “
Three-Dimensional Multi-Objective Design Optimization of a Transonic Compressor Rotor
,”
J. Propul. Power
,
20
(
3
), pp.
559
565
.
6.
Luo
,
C.
,
Song
,
L.
,
Li
,
J.
, and
Feng
,
Z.
,
2012
, “
A Study on Multidisciplinary Optimization of an Axial Compressor Blade Based on Evolutionary Algorithms
,”
ASME J. Turbomach.
,
134
(
5
), p.
054501
.
7.
Voß
,
C.
,
Aulich
,
M.
,
Kaplan
,
B.
, and
Nicke
,
E.
,
2006
, “
Automated Multiobjective Optimisation in Axial Compressor Blade Design
,”
Proceedings of the ASME Turbo Expo, Vol. 6B
,
Barcelona, Spain
,
May 8–11
.
8.
Siller
,
U.
,
Voß
,
C.
, and
Nicke
,
E.
,
2009
, “
Automated Multidisciplinary Optimization of a Transonic Axial Compressor
,”
Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Orlando, FL
,
Jan. 5–8
.
9.
Aulich
,
M.
, and
Siller
,
U.
,
2011
, “
High-Dimensional Constrained Multiobjective Optimization of a fan Stage
,”
Proceedings of the ASME Turbo Expo
,
Vancouver, British Columbia, Canada
,
June 6–10
.
10.
Elfert
,
M.
,
Weber
,
A.
,
Wittrock
,
D.
,
Peters
,
A.
,
Voss
,
C.
, and
Nicke
,
E.
,
2017
, “
Experimental and Numerical Verification of an Optimization of a Fast Rotating High-Performance Radial Compressor Impeller
,”
ASME J. Turbomach.
,
139
(
10
), p.
101007
.
11.
Schnoes
,
M.
, and
Nicke
,
E.
,
2017
, “
Exploring a Database of Optimal Airfoils for Axial Compressor Design
,”
ASME J. Turbomach.
,
139
(
5
), p.
051008
.
12.
Youngren
,
H.
, and
Drela
,
M.
,
1991
, “
Viscous/Inviscid Method for Preliminary Design of Transonic Cascades
,”
Proceedings of the 27th Joint Propulsion Conference
,
Sacramento, CA
,
June 24–26
.
13.
Hergt
,
A.
,
Klinner
,
J.
,
Wellner
,
J.
,
Willert
,
C.
,
Grund
,
S.
,
Steinert
,
W.
, and
Beversdorff
,
M.
,
2019
, “
The Present Challenge of Transonic Compressor Blade Design
,”
ASME J. Turbomach.
,
141
(
9
), p.
091004
.
14.
Hirsch
,
C.
,
1993
, “
Advanced Methods for Cascade Testing
,”
AGARDOgraph(AGARD AG 328)
.
15.
Schreiber
,
H.-A.
,
1976
,
Investigation of Two Transonic Compressor Cascades and Comparison With Rotor Data
. Technical Report, Deutsches Zentrum für Luft- und Raumfahrt, Cologne.
16.
Dunker
,
R. J.
,
Strinning
,
P. E.
, and
Weyer
,
H. B.
,
1977
, “
Experimental Study of the Flow Field Within a Transonic Axial Compressor Rotor by Laser Velocimetry and Comparison With Through-Flow Calculations
,”
American Society of Mechanical Engineers
, Paper No. 77-GT-28.
17.
Dunker
,
R. J.
, and
Hungenberg
,
H. G.
,
1980
, “
Transonic Axial Compressor Using Laser Anemometry and Unsteady Pressure Measurements
,”
AIAA J.
,
18
(
8
), pp.
973
979
.
18.
Schreiber
,
H.-A.
, and
Starken
,
H.
,
1981
, “
Evaluation of Blade Element Performance of Compressor Rotor Blade Cascades in Transonic and low Supersonic Flow Range
,”
Proceedings of the 5th International Symposium on Air Breathing Engines
,
Bangalore, India
,
Feb. 16–21
, pp.
61
67
.
19.
Schreiber
,
H. A.
, and
Starken
,
H.
,
1984
, “
Experimental Cascade Analysis of a Transonic Compressor Rotor Blade Section
,”
ASME J. Eng. Gas Turbines Power
,
106
(
2
), pp.
288
294
.
20.
Starken
,
H.
,
1989
, “
Design Criteria for Optimal Blading Design
,”
AGARD Lecture Series
(AGARD-LS-167).
21.
Steinert
,
W.
,
Fuchs
,
R.
, and
Starken
,
H.
,
1992
, “
Inlet Flow Angle Determination of Transonic Compressor Cascades
,”
ASME J. Turbomach.
,
114
(
3
), pp.
487
493
.
22.
Weber
,
A.
,
Steinert
,
W.
, and
Starken
,
H.
,
1991
, “
Design and Analysis of a High Pitch to Chord Ratio Cascade Representative of Ducted Propfans
,”
Proceedings of the ASME Turbo Expo, Vol. 1
,
Orlando, FL
,
June 3–6
.
23.
Nicke
,
E.
,
Steinert
,
W.
,
Weber
,
A.
, and
Starken
,
H.
,
1994
, “
Design and Analysis of a Highly Loaded Transonic Compressor Cascade
,”
AGARD
,
Montreal, Quebec, Canada
,
Oct. 4–8
.
24.
Weber
,
A.
,
Schreiber
,
H. A.
,
Fuchs
,
R.
, and
Steinert
,
W.
,
2001
, “
3D Transonic Flow in a Compressor Cascade with Shock- Induced Corner Stall
,”
Proceedings of the ASME Turbo Expo
,
New Orleans, LA
,
June 4–7
.
25.
Weber
,
A.
, and
Steinert
,
W.
,
1997
, “
Design, Optimization, and Analysis of a High-Turning Transonic Tandem Compressor Cascade
,”
Proceedings of the ASME Turbo Expo, Vol. 1
,
Orlando, FL
,
June 2–5
.
26.
Weber
,
A.
, and
Nicke
,
E.
,
1997
, “
A Study of Blade Sweep on the Performance of a Transonic Compressor Cascade with and Without Endwall Influence
,”
Proceedings of the 13th Int. Symposium on Air Breathing Engines (ISABE)
,
Chattanooga, TN
,
Sept. 8–12
.
27.
Hergt
,
A.
,
Klinner
,
J.
,
Steinert
,
W.
,
Grund
,
S.
,
Beversdorff
,
M.
,
Giebmanns
,
A.
, and
Schnell
,
R.
,
2015
, “
The Effect of an Eroded Leading Edge on the Aerodynamic Performance of a Transonic Fan Blade Cascade
,”
ASME J. Turbomach.
,
137
(
2
), p.
021006
.
28.
Klinner
,
J.
,
Hergt
,
A.
,
Grund
,
S.
, and
Willert
,
C. E.
,
2021
, “
High-Speed PIV of Shock Boundary Layer Interactions in the Transonic Buffet Flow of a Compressor Cascade
,”
Exp. Fluids
,
62
(
3
).
29.
Weber
,
A.
, and
Sauer
,
M.
,
2015
,
Pymesh—Meshing Package for Turbomachinery CFD Structured Multiblock Grids: User’s Manual
,
DLR, Institute of Propulsion Technology, Numerical Methods Group
,
Cologne
.
30.
Starken
,
H.
,
Schimming
,
P.
, and
Breugelmans
,
F. A.
,
1975
, “
Investigation of the Axial Velocity Density Ratio in a High Turning Cascade
,”
Proceedings of the ASME Turbo Expo
,
Houston, TX
,
Mar. 2–6
.
31.
Stark
,
U.
, and
Hoheisel
,
H.
,
1981
, “
The Combined Effect of Axial Velocity Density Ratio and Aspect Ratio on Compressor Cascade Performance
,”
ASME J. Eng. Power
,
103
(
1
), pp.
247
255
.
32.
Schreiber
,
H. A.
, and
Starken
,
H.
,
1982
, “On the Definition of the Axial Velocity Density Ratio in Theoretical and Experimental Cascade Investigations,”
Measuring Techniques in Transonic and Supersonic Flows in Cascades and Turbomachines
, pp.
1
7
.
33.
Becker
,
K.
,
Heitkamp
,
K.
, and
Kuegeler
,
E.
,
2010
, “
Recent Progress in A Hybrid-Grid CFD Solver For Turbomachinery Flows
,”
Proceedings Fifth European Conference on Computational Fluid Dynamics ECCOMAS CFD
.
34.
Ashcroft
,
G.
,
Heitkamp
,
K.
, and
Kuegeler
,
E.
,
2010
, “
High-Order Accurate Implicit Runge-Kutta Schemes for the Simulation of Unsteady Flow Phenomena in Turbomachinery
,”
Proceedings Fifth European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010
.
35.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.
36.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
4th International Symposium on Turbulence Heat and Mass Transfer
,
Antalya, Turkey
,
Oct. 12–17
.
37.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.
38.
Doerffer
,
P.
,
Flaszynski
,
P.
,
Dussauge
,
J.-P.
,
Babinsky
,
H.
,
Grothe
,
P.
,
Petersen
,
A.
, and
Billard
,
F.
,
2020
,
Transition Location Effect on Shock Wave Boundary Layer Interaction: Experimental and Numerical Findings From the TFAST Project, Vol. 144
, 1st ed.,
Springer Cham
,
Cham, Switzerland
.
39.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
40.
Chen
,
Z.
,
Zhou
,
M.
,
Xu
,
Q.
, and
Huang
,
X.
,
2018
, “
A Novel Quasi-3D Method for Cascade Flow Considering Axial Velocity Density Ratio
,”
Int. J. Turbo Jet Engines
,
35
(
1
), pp.
81
94
.
41.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longman Scientific & Technical
,
Essex, UK
.
You do not currently have access to this content.