Abstract

The present paper addresses the experimental and numerical study of the unsteady flow established in a high-pressure turbine stage with rim seal purge. The HPT test section, operated at engine-relevant flow conditions in the high-speed turbine rig of the von Karman Institute, is heavily instrumented for high-resolution, high-bandwidth aerothermal measurements. A rainbow rotor setup allows the simultaneous testing of six different sectors, each hosting a specific tip and platform geometry optimized for enhanced aerodynamic performance. This paper focuses on the flow over the baseline sector, equipped with an axisymmetric hub platform and a squealer tip, with a purge flowrate matching 1.74% and 1% of the stage mass flow. The numerical study relies on Reynolds-averaged Navier–Stokes (RANS) computations with test-calibrated boundary conditions. Unsteady pressure and heat transfer measurements are performed at the rotor shroud. The maximum heat transfer is achieved along the front pressure side rim, whereas the squealer cavity generates a region of uniformly low static pressure and heat flux. The experimental adiabatic wall temperature is derived to quantify the thermal contribution to the global heat flux, demonstrating an increase in over-tip gas temperature up to 1.2 T01 above the pressure side rim. A Euler-based model is proposed to evaluate the temperature-driving work-exchange mechanism in the tip gap. The peak in casing heat transfer coefficient (750 W/m2K) is found at the tip leading edge. Time-resolved measurements of outlet total pressure, Mach number, and flow angle confirm the predicted phase and intensity of the tip leakage and upper passage vortex in the near-casing region. At 20% hr, the total pressure minimum is highly underpredicted by the RANS, indicating an inaccurate modeling of the interaction between rim seal purge and main flow. The measured impact of the purge flow variation is more significant than predicted by the RANS computations, with a negative offset of about 0.5% P01 in the lower 50% hr at lower purge flowrate.

References

1.
Polanka
,
M. D.
,
Hoying
,
D. A.
,
Meininger
,
M.
, and
MacArthur
,
C. D.
,
2003
, “
Turbine Tip and Shroud Heat Transfer and Loading–Part A: Parameter Effects Including Reynolds Number, Pressure Ratio, and Gas-to-Metal Temperature Ratio
,”
ASME J. Turbomach.
,
125
(
1
), pp.
97
106
.
2.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power.
,
22
(
2
), pp.
271
285
.
3.
Bindon
,
J. P.
,
1989
, “
The Measurement and Formation of Tip Clearance Loss
,”
ASME J. Turbomach.
,
111
(
3
), pp.
257
263
.
4.
Metzger
,
D.
,
Dunn
,
M.
, and
Hah
,
C.
,
1991
, “
Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
,
113
(
3
), pp.
502
507
.
5.
Yamamoto
,
A.
,
1989
, “
Endwall Flow/Loss Mechanisms in a Linear Turbine Cascade With Blade Tip Clearance
,”
ASME J. Turbomach.
,
111
(
3
), pp.
264
275
.
6.
Heyes
,
F. J. G.
,
Hodson
,
H. P.
, and
Dailey
,
G. M.
,
1992
, “
The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades
,”
ASME J. Turbomach.
,
114
(
3
), pp.
643
651
.
7.
Bindon
,
J. P.
, and
Morphis
,
G.
,
1992
, “
The Development of Axial Turbine Leakage Loss for Two Profiled Tip Geometries Using Linear Cascade Data
,”
ASME J. Turbomach.
,
114
(
1
), pp.
198
203
.
8.
Krishnababu
,
S.
,
Newton
,
P.
,
Dawes
,
W.
,
Lock
,
G. D.
,
Hodson
,
H.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines-Part I: Effect of Tip Geometry and Tip Clearance Gap
,”
ASME J. Turbomach.
,
131
(
1
), p.
011006
.
9.
Coull
,
J. D.
, and
Atkins
,
N. R.
,
2015
, “
The Influence of Boundary Conditions on Tip Leakage Flow
,”
ASME J. Turbomach.
,
137
(
6
), p.
061005
.
10.
Jackson
,
A. J.
,
Wheeler
,
A. P. S.
, and
Ainsworth
,
R. W.
,
2015
, “
An Experimental and Computational Study of Tip Clearance Effects on a Transonic Turbine Stage
,”
Int. J. Heat Fluid Flow
,
56
, pp.
335
343
.
11.
Dunn
,
M.
,
1989
, “
Phase and Time-Resolved Measurements of Unsteady Heat Transfer and Pressure in a Full-Stage Rotating Turbine
,”
ASME 1989 International Gas Turbine and AeroEngine Congress and Exposition
,
American Society of Mechanical Engineers
, p.
V004T08A014
.
12.
Thorpe
,
S.
,
Yoshino
,
S.
,
Ainsworth
,
R.
, and
Harvey
,
N.
,
2004
, “
An Investigation of the Heat Transfer and Static Pressure on the Over-Tip Casing Wall of an Axial Turbine Operating at Engine Representative Flow Conditions. (ii). Time-Resolved Results
,”
Int. J. Heat Fluid Flow
,
25
(
6
), pp.
945
960
.
13.
Bunker
,
R.
,
Metzger
,
D.
, and
Wittig
,
S.
,
1992
, “
Local Heat Transfer in Turbine Disk Cavities: Part I–Rotor and Stator Cooling With Hub Injection of Coolant
”.
14.
Maroti
,
L.
,
Deak
,
G.
, and
Kreith
,
F.
,
1960
, “
Flow Phenomena of Partially Enclosed Rotating Disks
”.
15.
Cobb
,
E.
, and
Saunders
,
O.
,
1956
, “
Heat Transfer From a Rotating Disk
,”
Proc. R. Soc. London., A.
,
236
(
1206
), pp.
343
351
.
16.
Metzger
,
D.
,
Mathis
,
W.
, and
Grochowsky
,
L.
,
1979
, “
Jet Cooling at the Rim of a Rotating Disk
”.
17.
Beard
,
P. F.
,
Gao
,
F.
,
Chana
,
K. S.
, and
Chew
,
J.
,
2017
, “
Unsteady Flow Phenomena in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power.
,
139
(
3
), p.
032501
.
18.
Bohn
,
D.
,
Rudzinski
,
B.
,
Sürken
,
N.
, and
Gärtner
,
W.
,
2000
, “
Experimental and Numerical Investigation of the Influence of Rotor Blades on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage
,”
Turbo Expo: Power for Land, Sea, and Air
,
Munich, Germany
,
May 8–11
, Vol. 78569, Citeseer, p. V003T01A088.
19.
Clark
,
K.
,
Barringer
,
M.
,
Johnson
,
D.
,
Thole
,
K.
,
Grover
,
E.
, and
Robak
,
C.
,
2018
, “
Effects of Purge Flow Configuration on Sealing Effectiveness in a Rotor-Stator Cavity
,”
ASME J. Eng. Gas Turbines Power.
,
140
(
11
), p.
112502
.
20.
Robak
,
C. W.
,
Faghri
,
A.
, and
Thole
,
K. A.
,
2019
, “
Analysis of Gas Turbine Rim Cavity Ingestion With Axial Purge Flow Injection
,”
Turbo Expo: Power for Land, Sea, and Air
,
Phoenix, AZ
,
June 17–21
, Vol. 58653, American Society of Mechanical Engineers, p. V05BT15A011.
21.
McLean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
,
2001
, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage: Part I-Aerodynamic Measurements in the Stationary Frame
,”
ASME J. Turbomach.
,
123
(
4
), pp.
687
696
.
22.
Schrewe
,
S.
,
Werschnik
,
H.
, and
Schiffer
,
H.-P.
,
2013
, “
Experimental Analysis of the Interaction Between Rim Seal and Main Annulus Flow in a Low Pressure Two Stage Axial Turbine
,”
ASME J. Turbomach.
, 135(
5
), p.
051003
.
23.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Effects of Suction and Injection Purge-Flow on The Secondary Flow Structures of a High-Work Turbine
,”
ASME J. Turbomach.
, 132(
2
), p.
021021
.
24.
Zerobin
,
S.
,
Bauinger
,
S.
,
Marn
,
A.
,
Peters
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
The Unsteady Flow Field of a Purged High Pressure Turbine Based on Mode Detection
,”
Turbo Expo: Power for Land, Sea, and Air
,
Charlotte, NC
,
June 26–30
, Vol. 50817, American Society of Mechanical Engineers, p. V02DT46A008.
25.
Carvalho Figueiredo
,
A. J.
,
Schreiner
,
B.
,
Mesny
,
A.
,
Pountney
,
O. J.
,
Scobie
,
J.
,
Li
,
Y. S.
,
Cleaver
,
D.
, and
Sangan
,
C.
,
2021
, “
Volumetric Velocimetry Measurements of Purge-Mainstream Interaction in a One-Stage Turbine
,”
ASME J. Turbomach.
,
143
(
4
), p.
031021
.
26.
Regina
,
K.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2015
, “
Experimental Investigation of Purge Flow Effects on a High Pressure Turbine Stage
,”
ASME J. Turbomach.
,
137
(
4
), p.
041006
.
27.
Ong
,
J.
,
Miller
,
R. J.
, and
Uchida
,
S.
,
2012
, “
The Effect of Coolant Injection on the Endwall Flow of a High Pressure Turbine
,”
ASME J. Turbomach.
,
134
(
5
), p.
051003
.
28.
Paniagua
,
G.
,
De´ nos
,
R.
, and
Almeida
,
S.
,
2004
, “
Effect of the Hub Endwall Cavity Flow on the Flow-Field of a Transonic High-Pressure Turbine
,”
ASME J. Turbomach.
,
126
(
4
), pp.
578
586
.
29.
De´ nos
,
R.
, and
Paniagua
,
G.
,
2002
, “
Influence of the Hub Endwall Cavity Flow on the Time-Averaged and Time-Resolved Aero-Thermodynamics of an Axial Hp Turbine Stage
,”
Turbo Expo: Power for Land, Sea, and Air
,
Amsterdam, The Netherlands
,
June 3–6
, Vol. 36088,pp. 207–217.
30.
Sieverding
,
C.
, and
Arts
,
T.
,
1992
, “
The VKI Compression Tube Annular Cascade Facility Ct3
,”
ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition
,
Cologne, Germany
,
June 1–4
, p. V005T16A001.
31.
Cernat
,
B. C.
,
Pátỳ
,
M.
,
De Maesschalck
,
C.
, and
Lavagnoli
,
S.
,
2019
, “
Experimental and Numerical Investigation of Optimized Blade Tip Shapes—Part I: Turbine Rainbow Rotor Testing and Numerical Methods
,”
ASME J. Turbomach.
,
141
(
1
), p.
011006
.
32.
Denos
,
R.
,
2002
, “
Influence of Temperature Transients and Centrifugal Force on Fast-Response Pressure Transducers
,”
Exp Fluids
,
33
(
2
), pp.
256
264
.
33.
Iliopoulou
,
V.
,
Dénos
,
R.
,
Billiard
,
N.
, and
Arts
,
T.
,
2004
, “
Time-Averaged and Time-Resolved Heat Flux Measurements on a Turbine Stator Blade Using Two-Layered Thin-Film Gauges
,”
ASME J. Turbomach.
,
126
(
4
), pp.
570
577
.
34.
Hougen
,
J. O.
,
Martin
,
O. R.
, and
Walsh
,
R. A.
,
1963
, “
Dynamics of Pneumatic Transmission Lines
,”
Contr. Eng.
,
10
(
9
), pp.
114
117
.
35.
Lakshminarayana
,
B.
,
1995
,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
John Wiley & Sons
,
New York
.
36.
Oldfield
,
M.
,
2006
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
Turbo Expo: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11
, Vol. 4238, pp.
739
750
.
37.
Pátỳ
,
M.
,
Cernat
,
B. C.
,
De Maesschalck
,
C.
, and
Lavagnoli
,
S.
,
2019
, “
Experimental and Numerical Investigation of Optimized Blade Tip Shades—Part I: Turbine Rainbow Rotor Testing and Numerical Methods
,”
ASME J. Turbomach.
,
141
(
1
), p.
011006
.
38.
Paty
,
M.
, and
Lavagnoli
,
S.
,
2018
, “
Accuracy of RANS CFD Methods for Design Optimization of Turbine Blade Tip Geometries
,”
2018 Joint Propulsion Conference
,
Cincinnati, OH
,
July 9–11
.
39.
Cernat
,
B.
, and
Lavagnoli
,
S.
,
2020
, “
Experimental Investigation of Tip Design Effects on the Unsteady Aerodynamics and Heat Transfer of a High Speed Turbine
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
84102
,
American Society of Mechanical Engineers
, p.
V02ET41A022
.
40.
Bohn
,
D. E.
,
Decker
,
A.
,
Ohlendorf
,
N.
, and
Jakoby
,
R.
,
2006
, “
Influence of an Axial and Radial Rim Seal Geometry on Hot Gas Ingestion Into the Upstream Cavity of a 1.5-stage Turbine
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
4238
, pp.
1413
1422
.
You do not currently have access to this content.