Abstract

This paper presents the investigation of realistic cavity leakage flow for the von Karman Institute for Fluid Dynamics H25 axial compressor stage, equipped with a shroud cavity of average Reynolds number Rer = 2.2 * 106 and average aspect ratio G = 0.06. On top of overall performance measurements, time averaged data from unprecedented experimental dataset are used to characterize the stator hub shroud cavity flow field and its interaction with the power stream. The sensitivity of the stage performance and stability as well as the cavity flow topology is evaluated against injection conditions, compressor throttling, and compressor speed. Parametric steady RANS simulations of the stage under injection are used to support the findings and state on the relevance of such approach in the preliminary design phase of axial compressor components. As an example, a stage efficiency reduction of 0.97% for a leakage fraction of 0.56% at design point is retrieved. This performance drop is attributed to the effect of cavity flow on: the blockage ratio, the boundary layer skewness, and total temperature increase at stator row inlet. It is also presented that there is a mutual interaction between the cavity geometry and the cavity flow field organization. The injection homogenizes the cavity flow field and the associated pressure gradient. The various operating conditions presented also demonstrate that the cavity flow studied is, on average (i.e., time), sensitive to changes in compressor rotation speed and changes in stage loading.

References

1.
Wellborn
,
S. R.
, and
Okiishi
,
T. H.
,
1996
,
The Influence of Shrouded Stator Cavity Flows on Multistage Compressor Performance
. Technical Report 198536.
2.
Mahmood
,
S. M. H.
, and
Turner
,
M. G.
,
2017
, “
Modeling Capability for Cavity Flows in an Axial Compressor
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
.
3.
Wellborn
,
S. R.
, and
Okiishi
,
T. H.
,
1998
, “
The Influence of Shrouded Stator Cavity Flows on Multistage Compressor Performance
,”
ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
,
Stockholm, Sweden
,
June 2–5
.
4.
Sohn
,
D. W.
,
Kim
,
T.
, and
Song
,
S. J.
,
2006
, “
Influence of the Leakage Flow Tangential Velocity on the Loss Generation and Leakage Flow Kinematics in Shrouded Axial Compressor Cascade
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11
.
5.
Demargne
,
A. A. J.
, and
Longley
,
J. P.
,
2000
, “
The Aerodynamic Interaction of Stator Shroud Leakage and Mainstream Flows in Compressors
,”
ASME Turbo Expo 2000: Power for Land, Sea, and Air
,
Munich, Germany
,
May 8–11
.
6.
Kato
,
D.
,
Yamagami
,
M.
,
Tsuchiya
,
N.
, and
Kodama
,
H.
,
2011
, “
The Influence of Shrouded Stator Cavity Flows on the Aerodynamic Performance of a High Speed Multistage Axial Flow Compressor
,”
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
,
Vancouver, British Columbia, Canada
,
June 6–10
.
7.
Taylor
,
D. J.
, and
Longley
,
J. P.
,
2019
, “
Effects of Stator Platform Geometry Features on Blade Row Performance
,”
J. Global Power Propul. Soc.
,
3
, pp.
609
629
.
8.
Auchoybur
,
K.
, and
Miller
,
R.
,
2018
, “
The Sensitivity of 3D Separations in Multi-Stage Compressors
,”
J. Global Power Propul. Soc.
,
2
, pp.
329
343
.
9.
Savov
,
S. S.
,
Atkins
,
N. R.
, and
Uchide
,
S.
,
2016
, “
Comparison of Single and Double Lip Rim Seal Geometry
,”
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
.
10.
Beard
,
P. F.
,
Gao
,
F.
,
Chana
,
K. S.
, and
Chew
,
J.
,
2017
, “
Unsteady Flow Phenomena in Turbine Rim Seals
,”
ASME J. Eng. Gas. Turbines. Power
,
139
(
3
), p.
032501
.
11.
Chew
,
J. W.
,
Gao
,
F.
, and
Palermo
,
D. M.
,
2019
, “
Flow Mechanisms in Axial Turbine Rim Sealing
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
233
(
23–24
), pp.
7637
7657
.
12.
Babin
,
C.
,
Dumas
,
M.
,
Ottavy
,
X.
, and
Fontaneto
,
F.
,
2021
, “
Numerical Characterization of a HP Compressor Stage Equipped With a Closed Shrouded Stator Cavity
,”
ASME J. Turbomach.
, pp.
1
27
.
13.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
J. Basic. Eng.
,
82
(
1
), pp.
217
230
.
14.
Grossmann
,
S.
,
Lohse
,
D.
, and
Sun
,
C.
,
2016
, “
High-Reynolds Number Taylor-Couette Turbulence
,”
Annu. Rev. Fluid. Mech.
,
48
, pp.
53
80
.
15.
Ostilla-Mónico
,
R.
,
van der Poel
,
E. P.
,
Verzicco
,
R.
,
Grossmann
,
S.
, and
Lohse
,
D.
,
2014
, “
Exploring the Phase Diagram of Fully Turbulent Taylor–Couette Flow
,”
J. Fluid. Mech.
,
761
, pp.
1
26
. doi:10.1017/jfm.2014.618
16.
Fontaneto
,
F.
, and
Lahalle
,
A.
,
2016
, “
Highly Reliable Aerodynamic Calibration for Ground and Flight Testing Total Temperature Probes
,”
XXIII Biannual Symposium on Measuring Techniques in Turbomachinery Transonic and Supersonic Flow in Cascades and Turbomachines
,
Stuttgart, Germany
,
September
.
17.
Dell’Era
,
G.
,
Mersinligil
,
M.
, and
Brouckaert
,
J. F.
,
2016
, “
Assessment of Unsteady Pressure Measurement Uncertainty–Part II: Virtual Three-Hole Probe
,”
ASME J. Eng. Gas. Turbines. Power.
,
138
(
4
), p.
041602
.
18.
Cukurel
,
B.
,
Acarer
,
S.
, and
Arts
,
T.
,
2012
, “
A Novel Perspective to High-Speed Cross-Hot-Wire Calibration Methodology
,”
Exp. Fluids
,
53
(
4
), pp.
1073
1085
.
19.
Schröder
,
T. R.
,
Dohmen
,
H. -J.
,
Brillert
,
D.
, and
Benra
,
F. -K.
,
2020
, “
Impact of Leakage Inlet Swirl Angle in a Rotor–Stator Cavity on Flow Pattern, Radial Pressure Distribution and Frictional Torque in a Wide Circumferential Reynolds Number Range
,”
Int. J. Turbomachinery, Propul. Power
,
5
(
2
), p.
7
.
20.
Mersinligil
,
M.
,
Brouckaert
,
J.-F.
,
Courtiade
,
N.
, and
Ottavy
,
X.
,
2013
, “
On Using Fast Response Pressure Sensors in Aerodynamic Probes to Measure Total Temperature and Entropy Generation in Turbomachinery Blade Rows
,”
ASME J. Eng. Gas. Turbines. Power.
,
135
(
10
), p.
101601
.
21.
Flores Galindo
,
D. R.
,
2018
, “
Influence of Labyrinth Seals in Cavities on the Flow of an Axial Compressor
”.
Ph.D. thesis
,
Institut für Turbomaschinen und Fluid-Dynamik
,
Hannover
.
22.
Bentaleb
,
Y.
, and
Leschziner
,
M. A.
,
2013
, “
The Structure of a Three-Dimensional Boundary Layer Subjected to Streamwise-Varying Spanwise-Homogeneous Pressure Gradient
,”
Int. J. Heat Fluid Flow
,
43
, pp.
109
119
.
23.
De Ruyck
,
J.
,
Hirsch
,
C.
, and
Kool
,
P.
,
1979
, “
An Axial Compressor End-Wall Boundary Layer Calculation Method
,”
J. Eng. Power
,
101
(
2
), pp.
233
245
.
24.
De Ruyck
,
J.
, and
Hirsch
,
C.
,
1981
, “
Investigations of an Axial Compressor End-Wall Boundary Layer Prediction Method
,”
J. Eng. Power
,
103
(
1
), pp.
20
33
.
25.
Manfredi
,
M.
,
Babin
,
C.
, and
Fontaneto
,
F.
,
2020
, “
Transonic Axial Compressors Loss Correlations: Part II – Loss Models Validation
,”
ASME Turbo Expo 2020 Turbomachinery Technical Conference and Exposition
,
Virtual, Online
,
Sept. 21–25
.
26.
Johnston
,
J. P.
, and
Fiack
,
K. A.
,
1996
, “
Review – Advances in Three- Dimensional Turbulent Boundary Layers With Emphasis on the Wall-Layer Regions
,”
ASME J. Fluid. Eng.
,
118
(
2
), pp.
219
232
.
27.
Lynch
,
S. P.
,
2016
, “
Measurements and Predictions of the Three-Dimensional Boundary Layer in a Turbine Blade Passage
,”
54th AIAA Aerospace Sciences Meeting
,
San Diego, CA
,
Jan. 4–8
.
28.
Boufidi
,
E.
,
2017
, “
Uncertainty Quantification of Turbulence Statistics Measured by Hot-Wire Anemometry
,”
von Karman Institute for Fluid Dynamics PhD Symposium
,
Rhode St Genese, Belgium
,
Mar. 1–3
.
29.
Boufidi
,
E.
,
Lavagnoli
,
S.
, and
Fontaneto
,
F.
,
2020
, “
A Probabilistic Uncertainty Estimation Method for Turbulence Parameters Measured by Hot-Wire Anemometry in Short-Duration Wind Tunnels
,”
ASME J. Eng. Gas. Turbines. Power.
,
142
(
3
), p.
031007
.
You do not currently have access to this content.