Abstract

The determination of the rotational speed and massflow of the fan of a turbofan at windmill is critical in the design of the engine-supporting structure and the sizing of the vertical stabilizer. Given the very high bypass ratio obtained at windmill, the flow in the fan stage and bypass duct is of prime interest. Classical computational fluid dynamics simulations have been shown to predict such flows accurately, but extensive parametric studies can be needed, stressing the need for reduced-cost modeling of the flow in the engine. A body force modeling (BFM) approach for windmilling simulations is examined in the present contribution. The BFM approach replaces turbomachinery rows by source terms, reducing the computational cost (here by a factor 6). A shaft model is coupled to the BFM source terms, to drive the simulation to a power balance of the low-pressure shaft. The overall approach is thus self-contained and can predict both the massflow and the rotational speed in the windmilling regime. Comparisons with engine experimental results show the proposed model can predict the rotational speed within 7%, and the massflow within 5%. Local analysis and comparisons with experimental data and reference blade calculations show that the work exchange, in term of total temperature variation, is predicted within 0.5 K, and the overall total pressure ratio within 1%. However, the losses in the stator are largely underestimated, which explains the discrepancy for the massflow predictions.

References

1.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
,
Blackwell Science
,
Oxford, UK
.
2.
Daggett
,
D. L.
,
Brown
,
S. T.
, and
Kawai
,
R. T.
,
2003
, “
Ultra-Efficient Engine Diameter Study
,” Technical Report No. NASA/CR-2003-212309, NASA. https://ntrs.nasa.gov/citations/20030061085.
3.
von Groll
,
G.
, and
Ewins
,
D. J.
,
2000
, “
On the Dynamics of Windmilling in Aero-Engines
,”
IMechE, 7th International Conference on Vibrations of Rotating Machinery
,
Nottingham, UK
,
Sept. 12–14
,
Professional Engineering Publishing
, pp.
721
730
.
4.
Zachos
,
P. K.
,
2013
, “
Modelling and Analysis of Turbofan Engines Under Windmilling Conditions
,”
AIAA J. Propul. Power
,
29
(
4
), pp.
882
890
.
5.
Prasad
,
D.
, and
Lord
,
W. K.
,
2010
, “
Internal Losses and Flow Behavior of a Turbofan Stage at Windmill
,”
ASME J. Turbomach.
,
132
(
3
), p.
031007
.
6.
Gunn
,
E. J.
, and
Hall
,
C. A.
,
2016
, “
Loss and Deviation in Windmilling Fans
,”
ASME J. Turbomach.
,
138
(
10
), p.
101002
.
7.
Binder
,
N.
,
Courty-Audren
,
S. K.
,
Duplaa
,
S.
,
Dufour
,
G.
, and
Carbonneau
,
X.
,
2015
, “
Theoretical Analysis of the Aerodynamics of Low-Speed Fans in Free and Load-Controlled Windmilling Operation
,”
ASME J. Turbomach.
,
137
(
10
), p.
101001
.
8.
García Rosa
,
N.
,
Dufour
,
G.
,
Barènes
,
R.
, and
Lavergne
,
G.
,
2015
, “
Experimental Analysis of the Global Performance and the Flow Through a High-Bypass Turbofan in Windmilling Conditions
,”
ASME J. Turbomach.
,
137
(
5
), p.
051001
.
9.
Prasad
,
D.
,
2018
, “
Aerodynamic Similarity Principles and Scaling Laws for Windmilling Fans
,”
ASME J. Turbomach.
,
140
(
12
), p.
121004
.
10.
Dufour
,
G.
, and
Thollet
,
W.
,
Body Force Modeling of the Aerodynamics of the Fan of a Turbofan at Windmill
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
49712
,
American Society of Mechanical Engineers
, p.
V02CT39A045
.
11.
Braig
,
W.
,
Schulte
,
H.
, and
Riegler
,
R.
,
1999
, “
Comparative Analysis of the Windmilling Performance of Turbojet and Turbofan Engines
,”
J. Propul. Power
,
15
(
2
), pp.
326
333
.
12.
Mishra
,
R. K.
,
Gouda
,
G.
, and
Vedaprakash
,
B. S.
,
2008
, “
Relight Envelope of a Military Gas Turbine Engine: An Experimental Study
,”
Turbo Expo: Power for Land, Sea, and Air
,
Berlin, Germany
,
June 9–13
,
Vol. 43116
, pp.
55
60
.
13.
Hirsch
,
C.
,
Lacor
,
C.
,
Dener
,
C.
, and
Vucinic
,
D.
,
1991
, “
An Integrated CFD System for 3D Turbomachinery Applications
,” Technical Report No. AGARD-CP-510.
14.
Marble
,
F.
,
1964
, “Three Dimensional Flow in Turbomachines,”
High Speed Aerodynamics and Jet Propulsion
,
W. R.
Hawthorne
, ed.,
Princeton University Press
,
Princeton, NJ
, pp.
83
166
.
15.
Gong
,
Y. Y.
,
1998
, “
A Computational Model for Rotating Stall and Inlet Distortions in Multistage Compressors
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
16.
Kottapalli
,
A. P.
,
2013
, “
Development of a Body Force Model for Centrifugal Compressors
,” Master’s thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
17.
Thollet
,
W.
,
Dufour
,
G.
,
Carbonneau
,
X.
, and
Blanc
,
F.
,
2016
, “
Body Force Modeling for Aerodynamic Analysis of Air Intake–Fan Interactions
,”
Int. J. Numer. Methods Heat Fluid Flow
,
26
(
7
), pp.
2048
2065
.
18.
Peters
,
A.
,
Spakovszky
,
Z. S.
,
Lord
,
W. K.
, and
Rose
,
B.
,
2015
, “
Ultra-Short Nacelles for Low Fan Pressure Ratio Propulsors
,”
ASME J. Turbomach.
,
137
(
2
), p.
021001
.
19.
López de Vega
,
L.
,
Dufour
,
G.
,
Blanc
,
F.
, and
Thollet
,
W.
,
2018
, “
A Machine Learning Based Body Force Model for Fan–Airframe Aerodynamic Interactions
,” GPPS Forum, No. GPPS-2018-90.
20.
Loiodice
,
S.
,
Tucker
,
P. G.
, and
Watson
,
J.
,
2010
, “
Modelling of Coupled Open Rotor Engine Intakes
,”
Proceedings of the 48th AIAA Aerospace Sciences Meeting
,
Orlando, FL
,
Jan. 4–7
, p.
840
.
21.
Cao
,
T.
,
Hield
,
P.
, and
Tucker
,
P. G.
,
2017
, “
Hierarchical Immersed Boundary Method With Smeared Geometry
,”
J. Propul. Power
,
33
(
5
), pp.
1151
1163
.
22.
Cui
,
J.
,
Watson
,
R.
,
Ma
,
Y.
, and
Tucker
,
P.
,
2019
, “
Low Order Modeling for Fan and Outlet Guide Vanes in Aero-Engines
,”
ASME J. Turbomach.
,
141
(
3
), p.
031002
.
23.
Defoe
,
J. J.
, and
Spakovszky
,
Z. S.
,
2013
, “
Shock Propagation and MPT Noise From a Transonic Rotor in Nonuniform Flow
,”
ASME J. Turbomach.
,
135
(
1
), p.
011016
.
24.
López de Vega
,
L.
,
Dufour
,
G.
, and
García Rosa
,
N.
,
2021
, “
Fully Coupled Body Force–Engine Performance Methodology for Boundary Layer Ingestion
,”
J. Propul. Power
,
37
(
2
), pp.
192
201
.
25.
Gong
,
Y. Y.
,
Tan
,
C. S.
,
Gordon
,
K. A.
, and
Greitzer
,
E. M.
,
1999
, “
A Computational Model for Short-Wavelength Stall Inception and Development in Multistage Compressors
,”
ASME J. Turbomach.
,
121
(
4
), pp.
726
734
.
26.
Chima
,
R. V.
,
2006
, “
A Three-Dimensional Unsteady CFD Model of Compressor Stability
,”
ASME Turbo Expo 2006
,
Barcelona, Spain
,
May 8–11
.
27.
Liu
,
X.
,
Zhou
,
Y.
,
Sun
,
X.
, and
Sun
,
D.
,
2015
, “
Calculation of Flow Instability Inception in High Speed Axial Compressors Based on an Eigenvalue Theory
,”
ASME J. Turbomach.
,
137
(
6
), p.
061007
.
28.
Hsiao
,
E.
,
Naimi
,
M.
,
Lewis
,
J. P.
,
Dalbey
,
K.
,
Gong
,
Y. Y.
, and
Tan
,
C. S.
,
2001
, “
Actuator Duct Model of Turbomachinery Components for Powered-Nacelle Navier-Stokes Calculations
,”
J. Propul. Power
,
17
(
4
), pp.
919
927
.
29.
Vadlamani
,
N. R.
,
Cao
,
T.
,
Watson
,
R.
, and
Tucker
,
P. G.
,
2019
, “
Toward Future Installations: Mutual Interactions of Short Intakes With Modern High Bypass Fans
,”
ASME J. Turbomach.
,
141
(
8
), p.
081013
.
30.
Defoe
,
J. J.
, and
Spakovszky
,
Z. S.
,
2013
, “
Effects of Boundary-Layer Ingestion on the Aero-Acoustics of Transonic Fan Rotors
,”
ASME J. Turbomach.
,
135
(
5
), p.
051013
.
31.
Tyacke
,
J. C.
,
Naqavi
,
I. Z.
, and
Tucker
,
P. G.
,
2016
, “Body Force Modelling of Internal Geometry for Jet Noise Prediction,”
Advances in Simulation of Wing and Nacelle Stall
,
R.
Radespiel
,
R.
Niehuis
,
N.
Kroll
, and
K.
Behrends
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
97
109
.
32.
Ma
,
Y.
,
Cui
,
J.
,
Vadlamani
,
N. R.
, and
Tucker
,
P.
,
2018
, “
A Mixed-Fidelity Numerical Study for Fan–Distortion Interaction
,”
ASME J. Turbomach.
,
140
(
9
), p.
091003
.
33.
Hill
,
D. J.
, and
Defoe
,
J. J.
,
2020
, “
Scaling of Incidence Variations With Inlet Distortion for a Transonic Axial Compressor
,”
ASME J. Turbomach.
,
142
(
2
), p.
021003
.
34.
Plas
,
A. P.
,
Sargeant
,
M. A.
,
Madani
,
V.
,
Crichton
,
D.
,
Greitzer
,
E. M.
,
Hynes
,
T. P.
, and
Hall
,
C. A.
,
2007
, “
Performance of a Boundary Layer Ingesting (BLI) Propulsion System
,”
45th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 8–11
.
35.
Chima
,
R. V.
,
Arend
,
D. J.
,
Castner
,
R. S.
, and
Slater
,
J. W.
,
2010
, “
CFD Models of a Serpentine Inlet, Fan and Nozzle
,”
48th AIAA Aerospace Sciences Meeting
,
Orlando, FL
,
Jan. 4–7
.
36.
Hall
,
D. K.
,
Greitzer
,
E. M.
, and
Tan
,
C. S.
,
2017
, “
Analysis of Fan Stage Conceptual Design Attributes for Boundary Layer Ingestion
,”
ASME J. Turbomach.
,
139
(
7
), p.
071012
.
37.
Thollet
,
W.
,
2017
, “
Body Force Modeling of Fan-Airframe Interactions
,” Ph.D. thesis,
ISAE-SUPAERO
,
Toulouse, France.
38.
Godard
,
B.
,
De Jaeghere
,
E.
, and
Gourdain
,
N.
,
2019
, “
Efficient Design Investigation of a Turbofan in Distorted Inlet Conditions
,”
Turbo Expo: Power for Land, Sea, and Air
, p.
V02AT39A011
.
39.
Benichou
,
E.
,
Dufour
,
G.
,
Bousquet
,
Y.
,
Binder
,
N.
,
Ortolan
,
A.
, and
Carbonneau
,
X.
,
2019
, “
Body Force Modeling of the Aerodynamics of a Low-Speed Fan Under Distorted Inflow
,”
Int. J. Turbomach., Propul. Power
,
4
(
3
), p.
29
.
40.
Awes
,
A.
,
Dufour
,
G.
,
Daon
,
R.
,
Marty
,
J.
,
Barrier
,
R.
, and
Carbonneau
,
X.
,
2021
, “
Unsteady Body Force Methodology for Fan Operability Assessment Under Clean and Distorted Inflow Conditions
,”
AIAA Scitech 2021 Forum
,
Virtual Event
,
Jan. 11–15 and 19–21.
41.
Benichou
,
E.
,
Binder
,
N.
,
Bousquet
,
Y.
, and
Carbonneau
,
X.
,
2021
, “
Improvement of the Parallel Compressor Model and Application to Inlet Flow Distortion
,”
Int. J. Turbomach., Propul. Power
,
6
(
3
), p.
34
.
42.
Schlichting
,
H.
, and
Kestin
,
J.
,
1979
,
Boundary-Layer Theory
(
McGraw-Hill Classic Textbook Reissue Series
),
McGraw-Hill
,
New York
.
43.
Boudet
,
R.
,
1999
, “
Transmission De Puissance – Introduction
,”
Techniques de l’Ingénieur
, Saint-Denis, France, vol. 33, p.
13
.
44.
Dufour
,
G.
,
García Rosa
,
N.
, and
Duplaa
,
S.
,
2015
, “
Validation and Flow Structure Analysis in a Turbofan Stage at Windmill
,”
Proc. IMechE Part A: J. Power Energy
,
229
(
6
), pp.
571
583
.
45.
Ortolan
,
A.
,
Courty-Audren
,
S.
,
Lagha
,
M.
,
Binder
,
N.
,
Carbonneau
,
X.
, and
Challas
,
F.
,
2018
, “
Generic Properties of Flows in Low-Speed Axial Fans Operating at Load-Controlled Windmill
,”
ASME J. Turbomach.
,
140
(
8
), p.
081002
.
You do not currently have access to this content.