Abstract

The coolant flow condition at the film hole entrance has a notable effect on film cooling effectiveness. The previous studies about internal ribbed crossflow effects are the hole with a circular inlet cross section. In this study, a diffusion slot hole with a race-track inlet cross section is examined in a low-speed wind tunnel by the pressure-sensitive paint (PSP) technique. The film cooling effectiveness of three different hole configurations are investigated: a normal diffusion slot hole, a compound angle diffusion slot hole, and a lateral inclination angle diffusion slot hole. Two internal perpendicular crossflow conditions with and without ribs for the 45 deg inline crossflow and the 135 deg counter crossflow are discussed. The blowing ratios are varied from 0.5 to 2.5 at a constant crossflow-to-mainstream velocity ratio of 0.36. A detailed method for the uncertainty analysis of the PSP is also presented. It is found that the normal diffusion slot hole always shows the best cooling performance than other holes. The ribs under the crossflow condition have a positive effect on the film cooling effectiveness for the normal diffusion slot hole even though the compound angle changes the hole’s orientation. However, the ribs have a negative effect on the film cooling effectiveness for the geometrically asymmetric diffusion slot hole.

References

1.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
2.
Eckert
,
E. R. G.
,
1984
, “
Analysis of Film Cooling and Full-Coverage Film Cooling of Gas Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
206
213
.
3.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flowfield Measurements for Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
2
), pp.
327
336
.
4.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
5.
Hale
,
C. A.
,
Plesniak
,
M. W.
, and
Ramadhyani
,
S.
,
2000
, “
Film Cooling Effectiveness for Short Film Cooling Holes Fed by a Narrow Plenum
,”
ASME J. Turbomach.
,
122
(
3
), pp.
553
557
.
6.
Wilfert
,
G.
, and
Wolff
,
S.
,
2000
, “
Influence of Internal Flow on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
122
(
2
), pp.
327
333
.
7.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
4
), pp.
441
453
.
8.
Thole
,
K. A.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1997
, “
Effect of a Crossflow at the Entrance to a Film-Cooling Hole
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
533
540
.
9.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Effect of Internal Coolant Crossflow on the Effectiveness of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
,
125
(
3
), pp.
547
554
.
10.
Kiml
,
R.
,
Mochizuki
,
S.
, and
Murata
,
A.
,
2001
, “
Effects of Rib Arrangements on Heat Transfer and Flow Behavior in a Rectangular Rib-Roughened Passage: Application to Cooling of Gas Turbine Blade Trailing Edge
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
4
), pp.
675
681
.
11.
Kunze
,
M.
, and
Vogeler
,
K.
,
2014
, “
Flow Field Investigations on the Effect of Rib Placement in a Cooling Channel with Film-Cooling
,”
ASME J. Turbomach.
,
136
(
3
), p.
031009
.
12.
Bunker
,
R. S.
, and
Bailey
,
J. C.
,
2001
, “
Film Cooling Discharge Coefficient Measurments in a Turbulated Passage With Internal Cross Flow
,”
ASME Turbo Expo 2001
,
New Orleans, LA
,
Paper No. 2001-GT-0135
.
13.
Gritsch
,
M.
,
Saumweber
,
C.
,
Schulz
,
A.
,
Wittig
,
S.
, and
Sharp
,
E.
,
2000
, “
Effect of Internal Coolant Crossflow Orientation on the Discharge Coefficient of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
146
152
.
14.
Klavetter
,
S. R.
,
McClintic
,
J. W.
,
Bogard
,
D. G.
,
Dees
,
J. E.
,
Laskowski
,
G. M.
, and
Briggs
,
R.
,
2016
, “
The Effect of Rib Turbulators on Film Cooling Effectiveness of Round Compound Angle Holes Fed by an Internal Cross-Flow
,”
ASME J. Turbomach.
,
138
(
12
), p.
121006
.
15.
Fox
,
D. W.
,
Jones
,
F. B.
,
McClintic
,
J. W.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2019
, “
Rib Turbulator Effects on Crossflow-Fed Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
141
(
3
), p.
031013
.
16.
Sakai
,
E.
,
Takahashi
,
T.
, and
Agata
,
Y.
,
2013
, “
Experimental Study on Effects of Internal Ribs and Rear Bumps on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
135
(
3
), p.
031025
.
17.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2018
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness—Part I: Axial Shaped Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011003
.
18.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2018
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness—Part II: Compound Angle Shaped Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011004
.
19.
Fraas
,
M.
,
Glasenapp
,
T.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2019
, “
Film Cooling Measurements for a Laidback Fan-Shaped Hole: Effect of Coolant Crossflow on Cooling Effectiveness and Heat Transfer
,”
ASME J. Turbomach.
,
141
(
4
), p.
041006
.
20.
An
,
B. T.
,
Liu
,
J. J.
, and
Zhou
,
S. J.
,
2017
, “
Geometrical Parameter Effects on Film-Cooling Effectiveness of Rectangular Diffusion Holes
,”
ASME J. Turbomach.
,
139
(
8
), p.
081010
.
21.
Yu
,
Z. Q.
,
Li
,
C.
,
An
,
B. T.
,
Liu
,
J. J.
, and
Xu
,
G. Y.
,
2020
, “
Experimental Investigation of Film Cooling Effectiveness on a Gas Turbine Blade Pressure Surface With Diffusion Slot Holes
,”
Appl. Therm. Eng.
,
168
, p.
114851
.
22.
Roach
,
P. E.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.
23.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
,
2001
, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
123
(
4
), pp.
730
738
.
24.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), p.
013001
.
25.
Natsui
,
G.
,
Little
,
Z.
,
Kapat
,
J. S.
,
Dees
,
J. E.
, and
Laskowski
,
G.
,
2016
, “
A Detailed Uncertainty Analysis of Adiabatic Film Cooling Effectiveness Measurements Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
138
(
8
), p.
081007
.
26.
Wright
,
L. M.
,
McClain
,
S. T.
, and
Clemenson
,
M. D.
,
2011
, “
Effect of Density Ratio on Flat Plate Film Cooling With Shaped Holes Using PSP
,”
ASME J. Turbomach.
,
133
(
4
), p.
041011
.
27.
Narzary
,
D. P.
,
Liu
,
K. C.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2012
, “
Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
134
(
3
), p.
031006
.
28.
Charbonnier
,
D.
,
Ott
,
P.
,
Jonsson
,
M.
,
Cottier
,
F.
, and
Kobke
,
Th.
,
2009
, “
Experimental and Numerical Study of the Thermal Performance of a Film Cooled Turbine Platform
,”
ASME Turbo Expo 2009
,
Orlando, FL
,
Paper No. GT2009-60306
.
29.
Shiau
,
C. C.
,
Chen
,
A. F.
,
Han
,
J. C.
,
Azad
,
S.
, and
Lee
,
C. P.
,
2018
, “
Film Cooling Effectiveness Comparison on Full-Scale Turbine Vane Endwalls Using Pressure-Sensitive Paint Technique
,”
ASME J. Turbomach.
,
140
(
2
), p.
021009
.
30.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061008
.
31.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Bogard
,
D.
,
2011
, “
A Film-Cooling Correlation for Shaped Holes on a Flat-Plate Surface
,”
ASME J. Turbomach.
,
133
(
1
), p.
011002
.
32.
Xu
,
G. Y.
,
An
,
B. T.
,
Yu
,
Z. Q.
, and
Li
,
C.
,
2020
, “
Numerical Investigation on Film Cooling Characteristics of Slot-Sectional Diffusion Holes Combined With an Internal Cross-Flow Channel
,”
Appl. Therm. Eng.
,
181
, p.
115953
.
You do not currently have access to this content.