Abstract

This two-part paper describes a new approach to determine the effect of surface waviness, arising from manufacture of composite fan blades, on transition onset location movement and hence fan profile losses. The approach includes analysis and computations of unsteady disturbances in boundary layers over a wavy surface, assessed and supported by wind tunnel measurements of these disturbances and the transition location. An integrated framework is developed for analysis of surface waviness effects on natural transition. The framework, referred to as the extended eN method, traces the evolution of disturbance energy transfer in flow over a wavy surface, from external acoustic noise through exponential growth of Tollmien–Schlichting (TS) waves, to the start and end of the transition process. The computational results show that surface waviness affects the transition onset location due to the interaction between the surface waviness and the TS boundary layer instability and that the interaction is strongest when the geometric and TS wavelengths match. The condition at which this occurs, and the initial amplitude of the boundary layer disturbances that grow to create the transition onset is maximized, is called receptivity amplification. The results provide first-of-a-kind descriptions of the mechanism for the changes in transition onset location as well as quantitative calculations for the effects of surface waviness on fan performance due to changes in surface wavelength, surface wave amplitude, and the location at which the waviness is initiated on the fan blade.

References

1.
Solomon
,
W. J.
, and
Walker
,
G. J.
,
2000
, “
Incidence Effects on Wake Induced Transition on An Axial Compressor Blade
,”
J. Propul. Power.
,
16
(
3
), pp.
397
405
.
2.
Wissink
,
J. G.
,
Zaki
,
T. A.
,
Rodi
,
W.
, and
Durbin
,
P. A.
,
2014
, “
The Effect of Wake Turbulence Intensity on Transition in a Compressor Cascade
,”
Flow, Turbul. Combust.
,
93
(
4
), pp.
555
576
.
3.
Mayle
,
R. E.
,
1991
, “
The 1991 IGTI Scholar Lecture: The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
536
.
4.
White
,
F. M.
,
2006
,
Viscous Fluid Flow
, 3rd ed.,
McGraw-Hill
,
New York
.
5.
Saric
,
W. S.
,
Reed
,
H. L.
, and
Kerschen
,
E. J.
,
2002
, “
Boundary-Layer Receptivity to Freestream Disturbances
,”
Annu. Rev. Fluid. Mech.
,
34
, pp.
291
319
.
6.
Riedel
,
H.
, and
Sitzmann
,
M.
,
1998
, “
In-Flight Investigations of Atmospheric Turbulence
,”
Aeros. Sci. Technol.
,
2
(
5
), pp.
301
319
.
7.
Schubauer
,
G. B.
, and
Skramstad
,
H. K.
,
1947
, “
Laminar Boundary–Layer Oscillations and Stability of Laminar Flow
,”
J. Aeronaut. Sci.
,
14
(
2
), p.
1947
.
8.
Wells Jr.
,
C. S.
,
1967
, “
Effects of Freestream Turbulence on Boundary- Layer Transition
,”
AIAA. J.
,
5
(
1
), pp.
172
174
.
9.
van Ingen
,
J. L.
,
2008
, “
The eN Method for Transition Prediction. Historical Review of Work At TU Delft
,”
38th Fluid Dynamics Conference and Exhibit
, June 23–26, Paper No. AIAA 2008–3830.
10.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.
11.
Winter
,
K.
,
Hartmann
,
J.
,
Jeschke
,
P.
, and
Lahmer
,
M.
,
2013
, “
Experimental and Numerical Investigation of Streamwise Surface Waviness on Axial Compressor Blades
,”
Proceedings of Turbo Expo 2013: Turbine Technical Conference and Exposition
, GT2013-95983.
12.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
,
2004
,
Internal Flow
,
Cambridge University Press
,
Cambridge
.
13.
Liepmann
,
H. W.
, and
Roshko
,
A.
,
1957
,
Elements of Gasdynamics
,
Wiley
,
New York
.
14.
Esquivelzeta-Rabell
,
F. M.
,
Figueroa-Espinoza
,
B.
,
Legendre
,
D.
, and
Salles
,
P.
,
May 2012
, “
Shearing Flow Over An Idealized Wavy Surface: Comparison Between Linear Theory and DNS
,”
3rd Brazilian Conference on Boiling, Condensation and Multiphase Flow.
15.
Lee
,
J.
,
2019
, “
Characterization and Mitigation of Blade Waviness Effects on Fan Performance
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
16.
van Ingen
,
J. L.
,
1956
,
A Suggested Semi-Empirical Method for the Calculation of the Boundary Layer Transition Region
.
Technical Report
.
17.
Reed
,
H. L.
,
1996
, “
Linear Stability Theory Applied to Boundary Layers
,”
Annu. Rev. Fluid. Mech.
,
28
(
1
), pp.
389
428
.
18.
Theofilis
,
V.
,
2003
, “
Advances in Global Linear Instability Analysis of Nonparallel and Three-Dimensional Flows
,”
Prog. Aerosp. Sci.
,
39
(
4
), pp.
249
315
.
19.
Theofilis
,
V.
,
2011
, “
Global Linear Instability
,”
Annu. Rev. Fluid. Mech.
,
43
(
1
), pp.
319
352
.
20.
Seyfert
,
C.
, and
Krumbein
,
A.
,
2013
, “
Comparison of a Local Correlation-Based Transition Model With An eN-Method for Transition Prediction
,”
New Res. Num. Exp. Fluid Mech. VIII
,
121
, pp.
541
548
.
21.
Masad
,
J. A.
, and
Iyer
,
V.
,
1994
, “
Transition Prediction and Control in Subsonic Flow Over a Hump
,”
Phys. Fluids.
,
6
(
1
), pp.
313
327
.
22.
Masad
,
J. A.
,
1996
,
Effect of Surface Waviness on Transition in Three-Dimensional Boundary-Layer Flow
.
Technical Report
.
23.
Boermans
,
L. M. M.
, and
Blom
,
J. J. H.
,
1976
,
Low-Speed Aerodynamic Characteristics of an 18% Thick Airfoil Section Designed for the All-Flying Tailplane of the M-300 Sailplane
.
Technical Report, Delft, The Netherlands
.
24.
Choudhari
,
M.
,
1993
, “
Boundary-Layer Receptivity Due to Distributed Surface Imperfections of a Deterministic or Random Nature
,”
Theor. Comput. Fluid Dyn.
,
4
, pp.
101
117
.
25.
King
,
R. A.
,
2000
, “
Receptivity and Growth of Two- and Three-Dimensional Disturbances in a Blasius Boundary Layer
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
26.
Lee
,
J.
,
Ramaswamy
,
V.
,
Spakovszky
,
Z. S.
,
Greitzer
,
E. M.
,
Drela
,
M.
, and
Talbotec
,
J.
,
2021
, “
Effects of Surface Waviness on Fan Blade Boundary Layer Transition and Profile Loss—Part II: Experimental Assessments and Applications
,”
Proceedings of ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition
,
Virtual, Online
,
June 7–11
, Paper No. GT2021-58678.
27.
Benjamin
,
T. B.
,
1959
, “
Shearing Flow Over a Wavy Boundary
,”
J. Fluid. Mech.
,
6
(
2
), pp.
161
205
.
28.
Orszag
,
S. A.
,
1971
, “
Accurate Solution of the Orr-Sommerfeld Stability Equation
,”
J. Fluid. Mech.
,
50
(
4
), pp.
689
703
.
29.
Dongarra
,
J. J.
,
Straughan
,
B.
, and
Walker
,
D. W.
,
2008
, “
Chebyshev Tau - QZ Algorithm Methods for Calculating Spectra of Hydrodynamic Stability Problems
,”
Appl. Num. Math.
,
22
(
4
), pp.
399
434
.
30.
Schlichting
,
H.
,
1979
,
Boundary Layer Theory
, 7th ed.,
McGraw-Hill
,
New York
.
31.
Panton
,
R. L.
,
2013
,
Incompressible Flow
, 4th ed.,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.