Abstract

Studies show that boundary layer ingesting (BLI) propulsion can provide significant fuel burn reduction relative to pylon-mounted turbofan engines. However, this type of propulsion can lead to serious difficulties and engineering challenges. Numerical analyses of the fan with a uniform flow at the inlet and that exposed to the distorted flow were performed. These required the use of a full-annulus unsteady time-marching computational fluid dynamics (CFD) model, which was validated with experimental data obtained at a test rig. The first negative effect of the distorted inlet velocity profile is a variable incidence angle of the rotor. Both the calculations and the experiment show the nonuniform axial and tangential velocity profiles in front of the rotor. As a result, significant changes in the angle of attack of the blades and corresponding unsteady rotor loads are observed. The research was performed for different operating conditions to obtain performance curves and assess the BLI influence. This demonstrated the second problem arising from the operation of the fan with the distorted flow at the inlet, which is a reduction of the stall margin (48% reduction in the experiment). The whole stage was optimized for the axisymmetric flow to ensure a required value of stall margin and the highest possible efficiency at the design point. The experimental efficiency of the rig at the design point with the distorted inlet was 2.05% lower than the undistorted one. The CFD model shows a 1.25% reduction. Similar reductions were obtained for other operating points.

References

1.
Felder
,
J.
,
Brown
,
G.
,
Kim
,
H.
, and
Chu
,
J.
,
2011
, “
Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft
,”
Proceedings of 20th International Society for Airbreathing Engines
,
Gothenburg, Sweden
,
Sept. 12–16
, Paper No. ISABE-2011-1340.
2.
Felder
,
J. L.
,
Kim
,
H. D.
, and
Brown
,
G. V.
,
2009
, “
Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid Wing Body Aircraft
,”
Proceedings of 47th AIAA Aerospace Sciences Meeting
,
Orlando, FL
,
Jan. 5–8
, Paper No. AIAA 2009-1132.
3.
Felder
,
J. L.
,
Kim
,
H. D.
, and
Brown
,
G. V.
,
2011
, “
An Examination of the Effect of Boundary Layer Ingestion on Turboelectric Distributed Propulsion Systems
,”
Proceedings of 49th AIAA Aerospace Sciences Meeting
,
Orlando, FL
,
Jan. 4–7
, Paper No. AIAA 2011-300.
4.
Hardin
,
L. W.
,
Tillman
,
G.
,
Sharma
,
O. P.
,
Berton
,
J.
, and
Arend
,
D. J.
,
2012
, “
Aircraft System Study of Boundary Layer Ingesting Propulsion
,”
Proceedings of 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
Atlanta, GA
,
July 30–Aug. 1
, Paper No. AIAA 2012-3993.
5.
Florea
,
R. V.
,
Voytovych
,
D.
,
Tillman
,
G.
,
Stucky
,
M.
,
Shabbir
,
A.
,
Sharma
,
O.
, and
Arend
,
D. J.
,
2013
, “
Aerodynamic Analysis of a Boundary-Layer-Ingesting Distortion-Tolerant Fan
,”
Proceedings of ASME Turbo Expo 2013
,
San Antonio, TX
,
June 3–7
, pp.
1
7
.
6.
Arend
,
D. J.
,
Wolter
,
J. D.
,
Hirt
,
S. M.
,
Provenza
,
A.
,
Gazzaniga
,
J. A.
,
Cousins
,
W. T.
,
Hardin
,
L. W.
, and
Sharma
,
O. P.
,
2017
, “
Experimental Evaluation of an Embedded Boundary Layer Ingesting Propulsor for Highly Efficient Subsonic Cruise Aircraft
,”
Proceedings of 53rd AIAA/SAE/ASEE Joint Propulsion Conference
,
Atlanta, GA
,
July 10–12
, Paper No. AIAA 2017-5041.
7.
Gunn
,
E. J.
, and
Hall
,
C. A.
,
2014
, “
Aerodynamics of Boundary Layer Ingesting Fans
,”
Proceedings of ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
, pp.
1
13
.
8.
Perovic
,
D.
,
Gunn
,
E. J.
, and
Hall
,
C. A.
,
2015
, “
Stall Inception in a Boundary Layer Ingesting Fan
,”
Proceedings of ASME Turbo Expo 2015
,
Montreal, Canada
,
June 15–19
.
9.
Florea
,
R. V.
,
Matalanis
,
C.
,
Hardin
,
L. W.
,
Stucky
,
M.
, and
Shabbir
,
A.
,
2015
, “
Parametric Analysis and Design for Embedded Engine Inlets
,”
J. Propul. Power
,
31
(
3
), pp.
843
850
.
10.
Hall
,
D. K.
,
Greitzer
,
E. M.
, and
Tan
,
C. S.
,
2016
, “
Analysis of Fan Stage Design Attributes for Boundary Layer Ingestion
,”
Proceedings of ASME Turbo Expo 2016
,
Seoul, Korea
,
June 13–17
.
11.
Gunn
,
E. J.
, and
Hall
,
C. A.
,
2017
, “
Non-Axisymmetric Stator Design for Boundary Layer Ingesting Fans
,”
Proceedings of ASME Turbo Expo 2017
,
Charlotte, NC
,
June 26–30
, pp.
1
14
.
12.
Turner
,
M. G.
,
Merchant
,
A.
, and
Bruna
,
D.
,
2011
, “
A Turbomachinery Design Tool for Teaching Design Concepts for Axial-Flow Fans, Compressors, and Turbines
,”
ASME J. Turbomach.
,
133
(
3
), p.
031017
.
13.
Adams
,
B. M.
,
Ebeida
,
M. S.
,
Eldred
,
M. S.
,
Jakeman
,
J. D.
,
Swiler
,
L. P.
,
Stephens
,
J. A.
,
Vigil
,
D. M.
, et al
,
2015
, “
Dakota, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.0 User’s Manual
,”
Sandia National Laboratories
,
Albuquerque, NM
, Report No. SAND2014-4633.
14.
Mahmood
,
S. M. H.
,
Turner
,
M. G.
, and
Siddappaji
,
K.
,
2016
, “
Flow Characteristics of an Optimized Axial Compressor Rotor Using Smooth Design Parameters
,”
Proceedings of ASME Turbo Expo 2016
,
Seoul, South Korea
,
June 13–17
, pp.
1
12
.
15.
Swiler
,
L. P.
, and
Wyss
,
G. D.
,
2004
, “
A User’s Guide to Sandia’s Latin Hypercube Sampling Software: LHS UNIX Library/Standalone Version
,”
Sandia National Laboratories
,
Albuquerque, NM
, Report No. SAND2004-2439.
16.
Nemnem
,
A. F.
,
Turner
,
M. G.
,
Siddappaji
,
K.
, and
Galbraith
,
M.
,
2014
, “
A Smooth Curvature-Defined Meanline Section Option for a General Turbomachinery Geometry Generator
,”
Proceedings of ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
.
17.
Siddappaji
,
K.
,
Turner
,
M. G.
, and
Merchant
,
A.
,
2012
, “
General Capability of Parametric 3D Blade Design Tool for Turbomachinery
,”
Proceedings of ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
.
18.
Sieradzki
,
A.
, and
Łukasik
,
B.
,
2021
, “
Influence of the Limited Room Space on Inlet Conditions and Fan Operation at the Rotating Test rig
,”
J. Phys.: Conf. Ser.
,
1736
(
1
), p.
012051
.
19.
Kwiatkowski
,
T.
,
Sieradzki
,
A.
, and
Łukasik
,
B.
,
2022
, “
Method of Designing a Distortion Gauze for Testing a Boundary Layer Ingesting Fan
,”
Trans. Aerosp. Res.
,
2022
(
1
), pp.
1
17
.
20.
Dowling
,
A. P.
, and
Greitzer
,
E. M.
,
2007
, “
The Silent Aircraft Initiative—Overview
,”
45th AIAA Aerospace Sciences Meeting
,
Reno, NV
,
Jan. 8–11, 2007
, Paper No. AIAA-2007-0452.
21.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
,
1980
, “
Natural Transition of Boundary Layers—The Effects of Turbulence, Pressure Gradient, and Flow History
,”
J. Mech. Eng. Sci.
,
22
(
5
), pp.
213
228
.
22.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid, With Applications to Unsteady Flows Past Airfoils and Wings
,”
Proceedings of 10th Computational Fluid Dynamics Conference
,
Honolulu, HI
,
June 24–26
, Paper No. AIAA 91-1596.
23.
Bakhle
,
M. A.
,
Reddy
,
T. S.
, and
Coroneos
,
R. M.
,
2014
, “
Forced Response Analysis of a Fan With Boundary Layer Inlet Distortion
,”
Proceedings of 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
Claveland, OH
,
July 28–30
, Paper No. AIAA-3734.
You do not currently have access to this content.