Abstract

Friction loss and heat transfer enhancement measurements were obtained for double-sided, partial height, strip fin arrays in a high aspect ratio (AR = 8), rectangular channel. Fins were arranged in a staggered array configuration with channel height to fin thickness ratio H/W = 9.6, spanwise spacing distance to fin thickness ratio S/W = 8.0, and streamwise spacing distance to fin length ratio X/L = 1.0. Within the channel, shortened strip fins of equal length are positioned directly opposite to each other on two heat transfer surfaces with three gap size to channel height ratios considered G/H = 0.2, 0.3, and 0.4, respectively. The thermal performance of each fin configuration is determined from the measured pressure drop across the array and regionally averaged heat transfer coefficients at flow Reynolds numbers ranging Re = 20,000–80,000. Partial height strip fin results are compared to the baseline cases of full height strip fins and the smooth channel. Correlations of friction loss, heat transfer enhancement, and thermal performance are provided as functions of flow Reynolds numbers for all cases. Full height strip fins provide the greatest heat transfer enhancement of all cases but introducing a gap size can significantly reduce friction losses. The thermal performance is greatest when using full height strip fins for Reynolds numbers ranging Re = 20,000–30,000 and using partial height strip fins with the gap size of G/H = 0.3 for Re = 40,000–80,000.

References

1.
Han
,
J. C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jacob Memorial Award Paper
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
11
), p.
113001
.
2.
Metzger
,
D. E.
, and
Haley
,
S. W.
,
1982
, “
Heat Transfer Experiments and Flow Visualization for Arrays of Short Pin Fins
,”
Turbo Expo: Power for Land, Sea, and Air
,
London, UK
,
Apr. 18–22
,
p. V004T09A007
.
3.
Chyu
,
M. K.
,
Siw
,
S. C.
, and
Moon
,
H. K.
,
2009
, “
Effects of Height-to-Diameter Ratio of Pin Element on Heat Transfer From Staggered Pin-Fin Arrays
,”
ASME Turbo Expo 2009: Power for Land, Sea, and Air
,
Orlando, FL
,
June 8–12
, pp.
705
713
.
4.
Peng
,
Y.
,
1984
, “
Heat Transfer and Friction Loss Characteristics of Pin Fin Cooling Configurations
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
246
251
.
5.
Steuber
,
G. D.
, and
Metzger
,
D. E.
,
1986
, “
Heat Transfer and Pressure Loss Performance for Families of Partial Length Pin Fin Arrays in High Aspect Ratio Rectangular Ducts
,”
Proceedings of the Eighth International Heat Transfer Conference
,
San Francisco, CA
,
Aug. 17–22
, pp.
2915
2920
.
6.
Arora
,
S. C.
, and
Abdel-Messeh
,
W.
,
1990
, “
Characteristics of Partial Length Circular Pin Fins as Heat Transfer Augmentors for Airfoil Internal Cooling Passages
,”
ASME J. Turbomach.
,
112
(
3
), pp.
559
565
.
7.
Siw
,
S. C.
,
Chyu
,
M. K.
,
Shih
,
T. I.
, and
Alvin
,
M. A.
,
2012
, “
Effects of Pin Detached Space on Heat Transfer and Pin-Fin Arrays
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
8
), p.
081902
.
8.
Pandit
,
J.
,
Thompson
,
M.
,
Ekkad
,
S. V.
, and
Huxtable
,
S. T.
,
2014
, “
Effect of Pin Fin to Channel Height Ratio and Pin Fin Geometry on Heat Transfer Performance for Flow in Rectangular Channels
,”
Int. J. Heat Mass Transfer
,
77
(
1
), pp.
359
368
.
9.
Metzger
,
D. E.
,
Fan
,
C. S.
, and
Haley
,
S. W.
,
1984
, “
Effects of Pin Shape and Array Orientation on Heat Transfer and Pressure Loss in Pin Fin Arrays
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
252
257
.
10.
Chyu
,
M. K.
,
Hsing
,
Y. C.
, and
Natarajan
,
V.
,
1998
, “
Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel
,”
ASME J. Turbomach.
,
120
(
2
), pp.
362
367
.
11.
Uzol
,
O.
, and
Camci
,
C.
,
2005
, “
Heat Transfer, Pressure Loss and Flow Field Measurements Downstream of Staggered Two-Row Circular and Elliptical Pin Fin Arrays
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
5
), pp.
458
471
.
12.
Chyu
,
M. K.
,
Yen
,
C. H.
, and
Siw
,
S.
,
2007
, “
Comparison of Heat Transfer From Staggered Pin Fin Arrays With Circular, Cubic and Diamond Shaped Elements
,”
ASME Turbo Expo 2007: Power for Land, Sea, and Air
,
Montreal, Canada
,
May 14–17
, pp.
991
999
.
13.
Tarchi
,
L.
,
Facchini
,
B.
, and
Zecchi
,
S.
,
2008
, “
Experimental Investigation of Innovative Internal Trailing Edge Cooling Configurations With Pentagonal Arrangement and Elliptic Pin Fin
,”
Int. J. Rotating Mach.
,
2008
(
1
), pp.
1
10
.
14.
Kirsch
,
K. L.
,
Ostanek
,
J. K.
, and
Thole
,
K. A.
,
2014
, “
Comparison of Pin Surface Heat Transfer in Arrays of Oblong and Cylindrical Pin Fins
,”
ASME J. Turbomach.
,
136
(
4
), p.
041015
.
15.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2015
, “
Heat Transfer Measurements of Oblong Pins
,”
ASME J. Turbomach.
,
137
(
7
), p.
071004
.
16.
Xu
,
J.
,
Yao
,
J.
,
Su
,
P.
,
Lei
,
J.
,
Wu
,
J.
, and
Gao
,
T.
,
2017
, “
Heat Transfer and Pressure Loss Characteristics of Pin-Fins With Different Shapes in a Wide Channel
,”
Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
,
p. V05AT16A006
.
17.
Nuntakulamarat
,
M.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2020
, “
Heat Transfer and Pressure Drop Measurements in a High Aspect Ratio Channel With Circular Pins and Strip Fins
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031019
.
18.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
, https://www.taylorfrancis.com/books/mono/10.1201/b13616/gas-turbine-heat-transfer-cooling-technology
19.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
Dewitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
.
Hoboken, NJ
, https://books.google.com/books?id=vvyIoXEywMoC
20.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainty in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.