Abstract

This paper (Part II) presents the broadband noise predictions of a turbofan stage based on a hybrid method proposed by ONERA in the framework of the European project TurboNoiseBB. The numerical approach relies on a ZDES (Zonal Detached Eddy Simulation) strategy that is applied to a fan module at approach conditions and tested in AneCom facility (Wildau, Germany). The ZDES method with main aerodynamic flow features is detailed in a companion paper (Part I), and this one focuses on acoustic analyses. Acoustic codes based on Amiet's theory and FWH (Ffowcs Williams and Hawkings) analogy, both taking into account for duct propagation effects, are briefly described in the article and chained to the computational fluid dynamics to assess the rotor–stator interaction (RSI) noise (focusing on stator sources). The required inputs are the turbulent wake information (issued from either Reynolds Averaged Navier-Stokes (RANS) or ZDES) in front of the stator and the unsteady pressure on the vane wall, respectively. Turbulent velocity profiles and velocity spectra are compared to hot-wire measurements in the interstage region. A nice agreement is globally observed with a clear improvement compared to RANS solutions. Then, sound power spectra in the intake and bypass duct provided by acoustic codes are discussed and compared to the experiment. Reliable numerical predictions are obtained when undesirable additional sources in the rear-chord region (believed to be caused by local flow detachments from the vane leading edge and near the trailing edge) are removed from the FWH surface integration. ZDES + FWH spectra are found to be not so far from RANS + Amiet ones, with a best fitting to the experimental spectrum shape and predicted levels 3 dB below the measurements.

References

1.
Meyer
,
R.
,
Hakansson
,
S.
,
Hage
,
W.
, and
Enghardt
,
L.
,
2019
, “
Instantaneous Flow Field Measurements in the Interstage Section Between a Fan and the Outlet Guiding Vanes at Different Axial Positions
,”
Proceedings of the 13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
,
Lausanne (Switzerland)
, pp.
8
12
.
2.
Tapken
,
U.
,
Behn
,
M.
,
Spitalny
,
M.
, and
Pardowitz
,
B.
,
2019
, “
Radial Mode Breakdown of the ACAT1 Fan Broadband Noise Generation in the Bypass Duct Using a Sparse Sensor Array
,”
Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference
,
Delft, The Netherlands
,
May, 20–24
.
3.
Behn
,
M.
, and
Tapken
,
U.
,
2019
, “
Investigation of Sound Generation and Transmission Effects Through the ACAT1 Fan Stage Using Compressed Sensing-Based Mode Analysis
,”
Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference
,
Delft, The Netherlands
,
May 20–24
.
4.
François
,
B.
,
Barrier
,
R.
, and
Polacsek
,
C.
,
2022
, “
Zonal Detached Eddy Simulation of the Fan-OGV Stage of a Turbofan Engine: PartI—Methodology, Numerical Setup and Aerodynamic Analysis
,”
ASME J. Turbomach
.
5.
Bonneau
,
V.
,
Polacsek
,
C.
,
Castillon
,
L.
,
Marty
,
J.
,
Gervais
,
Y.
, and
Moreau
,
S.
,
2016
, “
Turbofan Broadband Noise Predictions Using a 3-D ZDES Rotor Blade Approach
,”
Proceedings of the 22nd AIAA/CEAS Aeroacoustics Conference
,
Lyon, France
,
May 30–June 1
, Paper No. AIAA-2016-2950.
6.
François
,
B.
,
Barrier
,
R.
, and
Polacsek
,
C.
,
2020
, “
Zonal Detached Eddy Simulation of the Fan-OGV Stage of a Modern Turbofan Engine
,”
Turbo Expo: Power for Land, Sea, and Air
,
London, UK
,
June 22–26
, p. V02AT32A004.
7.
Polacsek
,
C.
,
Daroukh
,
M.
,
François
,
B.
, and
Barrier
,
R.
,
2020
, “
Turbofan Broadband Noise Predictions Based on a ZDES Calculation of a Fan-OGV Stage
,”
Forum Acusticum 2020
,
Lyon, France
,
Dec. 7–11
.
8.
Casalino
,
D.
,
Hazir
,
A.
, and
Mann
,
A.
,
2018
, “
Turbofan Broadband Noise Prediction Using the Lattice Boltzmann Method
,”
AIAA J.
,
56
(
2
), pp.
609
628
.
9.
Daroukh
,
M.
,
Le Garrec
,
T.
, and
Polacsek
,
C.
,
2021
, “
Low-Speed Turbofan Aerodynamic and Acoustic Prediction With an Isothermal Lattice Boltzmann Method
,”
AIAA J.
,
60
(
2
), pp.
1152
1170
.
10.
Leonard
,
T.
,
Sanjosé
,
M.
,
Moreau
,
S.
, and
Duchaine
,
F.
,
2016
, “
Large Eddy Simulation of a Scale-Model Turbofan for Fan Noise Source Diagnostic
,”
Proceedings of the 22nd AIAA/CEAS Aeroacoustics Conference
,
Lyon, France
,
May 30–June 1
, p.
3000
.
11.
Arroyo
,
C. P.
,
Leonard
,
T.
,
Sanjosé
,
M.
,
Moreau
,
S.
, and
Duchaine
,
F.
,
2019
, “
Large Eddy Simulation of a Scale-Model Turbofan for Fan Noise Source Diagnostic
,”
J. Sound Vib.
,
445
(
Special issue
), pp.
64
76
.
12.
Lewis
,
D.
,
Moreau
,
S.
,
Jacob
,
M. C.
, and
Sanjosé
,
M.
,
2021
, “
ACAT1 Fan Stage Broadband Noise Prediction Using Large-Eddy Simulation and Analytical Models
,”
AIAA J.
,
60
(
1
), pp.
360
380
.
13.
Amiet
,
R. K.
,
1975
, “
Acoustic Radiation From an Airfoil in Turbulent Stream
,”
J. Sound Vib.
,
41
(
4
), pp.
407
420
.
14.
Williams
,
F.
,
and Hawkings
,
J. E.
, and
L
,
D.
,
1969
, “
Sound Generation by Turbulence and Surfaces in Arbitrary Motion
,”
Philos. Trans. R. Soc., A
,
264
(
1151
), pp.
321
342
.
15.
Kissner
,
C.
,
Guérin
,
S.
,
Seeler
,
P.
,
Billson
,
M.
,
Chaitanya
,
P.
,
Larana
,
P. C.
,
de Laborderie
,
H.
, et al
,
2020
, “
ACAT1 Benchmark of RANS-Informed Analytical Methods for Fan Noise Prediction: Part I—Influence of the RANS Simulation
,”
Acoustics
,
2
(
3
), pp.
539
578
.
16.
Guérin
,
S.
,
Kissner
,
C.
,
Seeler
,
P.
,
Blázquez
,
R.
,
Carrasco Laraña
,
P.
,
de Laborderie
,
H.
, and
Thisse
,
J.
,
2020
, “
ACAT1 Benchmark of RANS-Informed Analytical Methods for Fan Noise Prediction: Part II—Influence of the Acoustic Models
,”
Acoustics
,
2
(
3
), pp.
617
649
.
17.
Deck
,
S.
,
2012
, “
Recent Improvements in the Zonal Detached Eddy Simulation (ZDES) Formulation
,”
Theor. Comput. Fluid Dyn.
,
26
(
6
), pp.
523
550
.
18.
Cambier
,
L.
,
Heib
,
S.
, and
Plot
,
S.
,
2013
, “
The Onera ElsA CFD Software: Input From Research and Feedback From Industry
,”
Mech. Ind.
,
14
(
3
), pp.
159
174
.
19.
Poinsot
,
T.
, and
Lele
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.
20.
Thompson
,
K. W.
,
1987
, “
Time Dependent Boundary Conditions for Hyperbolic Systems
,”
J. Comput. Phys.
,
68
(
1
), pp.
1
24
.
21.
Tucker
,
P. G.
, and
Wang
,
Z. N.
,
2021
, “
Eddy Resolving Strategies in Turbomachinery and Peripherical Components
,”
ASME J. Turbomach.
,
143
(
1
), p.
010801
.
22.
Bolinches
,
M.
,
Cadrecha
,
D.
,
Corral
,
R.
, and
Gisbert
,
F.
,
2020
, “
Prediction of Reynolds Number Effects on Low-Pressure Turbines Using a High-Order ILES Method
,”
ASME J. Turbomach.
,
142
(
3
), p.
031002
.
23.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
England, U.K.
24.
Jaron
,
R.
,
Herthum
,
H.
,
Franke
,
M.
,
Moreau
,
A.
, and
Guérin
,
S.
,
2017
,
Impact of Turbulence Models on RANS-Informed Prediction of Fan Broadband Interaction Noise
, ETC12.
25.
Ganz
,
U. W.
,
Joppa
,
P. D.
,
Patten
,
T. J.
, and
Scharpf
,
D. F.
,
1998
,
Boeing 18-Inch Fan Rig Broadband Noise Test
, NASA Report No. CR-1998-208704.
26.
Lewis
,
D.
,
de Laborderie
,
J.
,
Sanjosé
,
M.
,
Moreau
,
S.
,
Jacob
,
M. C.
, and
Masson
,
V.
,
2021
, “
Parametric Study on State-of-the-Art Analytical Models for Fan Broadband Interaction Noise Predictions
,”
J. Sound Vib.
,
514
, p.
116423
.
27.
Reboul
,
G.
,
Polacsek
,
C.
,
Lewy
,
S.
, and
Heib
,
S.
,
2008
, “
Ducted-Fan Broadband Noise Simulations Using Unsteady or Averaged Data
,”
INTER-NOISE and NOISE-CON Congress and Conference Proceedings
,
Shanghai, China
,
Oct. 26–29
, pp.
1454
1469
.
28.
Buszyk
,
M.
,
Le Garrec
,
T.
,
Polacsek
,
C.
, and
Barrier
,
R.
,
2021
, “
Lattice Boltzmann Simulations in a Rectilinear Cascade Configuration for the Turbulence-Airfoil Interaction Noise Evaluation and Reduction Through Serrated Leading Edges
,”
EURONOISE 2021
,
Madeira, Portugal
,
Oct. 25–27
,
Virtual
.
29.
Hanson
,
D. B.
,
2001
,
Theory for broadband Noise of rotor and Stator Cascades With Inhomogeneous Inflow Turbulence Including Effects of Lean and Sweep
, Technical Report No. CR-2001-210762, NASA.
30.
Winkler
,
J.
,
Moreau
,
S.
, and
Carolus
,
T.
,
2012
, “
Airfoil Trailing-Edge Blowing: Broadband Noise Prediction From Large-Eddy Simulation
,”
AIAA J.
,
50
(
2
), pp.
294
303
.
31.
Blázquez-Navarro
,
R.
, and
Corral
,
R.
,
2021
, “
Prediction of Fan Acoustic Blockage on Fan/Outlet Guide Vane Broadband Interaction Noise Using Frequency Domain Linearised Navier-Stokes Solvers
,”
J. Sound Vib.
,
500
, p.
116033
.
32.
Goldstein
,
M.-E.
,
1976
,
Aeroacoustics
,
McGraw-Hill
,
New York
, pp.
63
66
.
33.
Rienstra
,
S. W.
,
1984
, “
Acoustic Radiation From a Semi-Infinite Annular Duct in Uniform Subsonic Mean Flow
,”
J. Sound Vib.
,
94
(
2
), pp.
267
288
.
34.
Cantrell
,
R. H.
, and
Hart
,
R. W.
,
1964
, “
Interaction Between Sound and Flow in Acoustic Cavities: Mass, Momentum, and Energy Considerations
,”
J. Acoust. Soc. Am.
,
36
(
4
), pp.
697
706
.
35.
Buszyk
,
M.
,
Polacsek
,
C.
, and
Le Garrec
,
T.
,
2020
, “
Assessment of a CAA Methodology for Turbulence-Cascade Interaction Noise Predictions and Reduction From Serrated Airfoils
,”
Forum Acusticum 2020
,
Lyon, France
.
You do not currently have access to this content.