Abstract

This article deals with the zonal detached eddy simulation of the fan module of a modern turbofan engine for the prediction of the broadband noise due to the interaction of the fan turbulent wakes with the stationary outlet guide vanes. The simulation relies on a hybrid RANS/LES approach with a zonal strategy: the core airflow is treated in RANS, while the bypass airflow is solved with the hybrid approach. The simulation was performed during four revolutions, and statistical convergence was reached. Inspections of the flowfields highlight a consistent behavior of the shielding function (border between RANS and LES solving areas) around the blade walls and at the trailing edge for a such complex flow. The fan module was tested in the AneCom facility in which hot wire measurements were made in-between the fan and the outlet guide vanes. The numerical results are compared to this large dataset of measurements. The flow maps are well retrieved by the simulation for both the time-averaged and the turbulent quantities. Comparison of radial profiles shows an excellent agreement for the three root-mean-square (RMS) components of the velocities between zonal detached eddy simulation (ZDES) and the measurements, particularly in the tip gap flow area, in which RANS results do not reproduce correctly the flow quantities. The wake shape, a key feature in the mechanism of generation of rotor–stator interaction noise), is quite well predicted by the ZDES simulation. These numerical results demonstrate the maturity of the approach for the simulation of complex turbomachinery flows.

References

1.
Peake
,
N.
, and
Parry
,
A. B.
,
2012
, “
Modern Challenges Facing Turbomachinery Aeroacoustics
,”
Annu. Rev. Fluid. Mech.
,
44
, pp.
227
248
.
2.
Polacsek
,
C.
,
Daroukh
,
M.
,
François
,
B.
, and
Barrier
,
R.
,
2022
, “
Zonal Detached Eddy Simulation of the Fan-OGV Stage of a Turbofan Engine: Part II—Broadband Noise Predictions
,”
ASME J. Turbomach.
, pp.
1
34
.
3.
Moreau
,
A.
, and
Enghardt
,
L.
,
2009
, “
Ranking of Fan Broadband Noise Sources Based on an Experimental Parametric Study
,”
15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference)
,
Miami, FL
,
May 11–13
, p.
3222
.
4.
Deck
,
S.
,
2012
, “
Recent Improvements in the Zonal Detached Eddy Simulation (ZDES) Formulation
,”
Theor. Computat. Fluid Dyn.
,
26
(
6
), pp.
523
550
.
5.
Bonneau
,
V.
,
Polacsek
,
C.
,
Castillon
,
L.
,
Marty
,
J.
,
Gervais
,
Y.
, and
Moreau
,
S.
,
2016
, “
Turbofan Broadband Noise Predictions Using a 3-D ZDES Rotor Blade Approach
,”
22nd AIAA/CEAS Aeroacoustics Conference
,
Lyon, France
,
May 30–June 1
, p.
2950
.
6.
François
,
B.
,
Barrier
,
R.
, and
Polacsek
,
C.
,
2020
, “
Zonal Detached Eddy Simulation of the Fan-OGV Stage of a Modern Turbofan Engine
,”
ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
,
Virtual Online
,
Sept. 21–25
, Paper No. V02AT32A004.
7.
Polacsek
,
C.
,
Daroukh
,
M.
,
François
,
B.
, and
Barrier
,
R.
,
2020
, “
Turbofan Broadband Noise Predictions Based on a ZDES Calculation of a Fan-OGV Stage
,”
Forum Acustica
,
Lyon, France
,
December
.
8.
Kholodov
,
P.
,
Koch
,
R.
,
Sanjosé
,
M.
, and
Moreau
,
S.
,
2021
, “
Wall-Resolved Large Eddy Simulation of a Realistic Turbofan Rotor for Noise Prediction
,”
AIAA Aviation 2021 Forum
,
Virtual Event
,
Aug. 2–6
, p.
2256
.
9.
Leonard
,
T.
,
Sanjose
,
M.
,
Moreau
,
S.
, and
Duchaine
,
F.
,
2016
, “
Large Eddy Simulation of a Scale-Model Turbofan for Fan Noise Source Diagnostic
,”
22nd AIAA/CEAS Aeroacoustics Conference
,
Lyon, France
,
May 30–June 1
, p.
3000
.
10.
Arroyo
,
C. P.
,
Leonard
,
T.
,
Sanjosé
,
M.
,
Moreau
,
S.
, and
Duchaine
,
F.
,
2019
, “
Large Eddy Simulation of a Scale-Model Turbofan for Fan Noise Source Diagnostic
,”
J. Sound. Vib.
,
445
, pp.
64
76
.
11.
Hah
,
C.
, and
Romeo
,
M.
,
2017
, “
LES Investigation of Wake Development in a Transonic Fan Stage for Aeroacoustic Analysis
,”
23rd International Symposium on Air Breathing Engines (ISABE)
,
Manchester, UK
,
Sept. 3–8
.
12.
Shur
,
M.
,
Strelets
,
M.
,
Travin
,
A.
,
Spalart
,
P.
, and
Suzuki
,
T.
,
2018
, “
Unsteady Simulations of a Fan/Outlet-Guide-Vane System: Aerodynamics and Turbulence
,”
AIAA. J.
,
56
(
6
), pp.
2283
2297
.
13.
Suzuki
,
T.
,
Spalart
,
P. R.
,
Shur
,
M. L.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2019
, “
Unsteady Simulations of a Fan/Outlet-Guide-Vane System: Broadband-Noise Computation
,”
AIAA. J.
,
57
(
12
), pp.
5168
5181
.
14.
Casalino
,
D.
,
Hazir
,
A.
, and
Mann
,
A.
,
2018
, “
Turbofan Broadband Noise Prediction Using the Lattice Boltzmann Method
,”
AIAA. J.
,
56
(
2
), pp.
609
628
.
15.
Meyer
,
R.
,
Hakansson
,
S.
,
Hage
,
W.
, and
Enghardt
,
L.
,
2019
, “
Instantaneous Flow Field Measurements in the Interstage Section Between a Fan and the Outlet Guiding Vanes at Different Axial Positions
,”
Proceedings of 13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
,
Lausanne, Switzerland
,
Apr. 8–12
, pp.
8
12
.
16.
Kissner
,
C.
,
Guérin
,
S.
,
Seeler
,
P.
,
Billson
,
M.
,
Chaitanya
,
P.
,
Carrasco Laraña
,
P.
,
de Laborderie
,
H.
,
François
,
B.
,
Lefarth
,
K.
,
Lewis
,
D.
,
Montero Villar
,
G.
, and
Nodé-Langlois
,
T.
,
2020
, “
ACAT1 Benchmark of RANS-Informed Analytical Methods for Fan Broadband Noise Prediction–Part I–Influence of the RANS Simulation
,”
Acoustics
,
2
(
3
), pp.
539
578
. https://www.mdpi.com/2624-599X/2/3/29
17.
Guérin
,
S.
,
Kissner
,
C.
,
Seeler
,
P.
,
Blázquez
,
R.
,
Carrasco Laraña
,
P.
,
De Laborderie
,
H.
,
Lewis
,
D.
,
Chaitanya
,
P.
,
Polacsek
,
C.
, and
Thisse
,
J.
,
2020
, “
ACAT1 Benchmark of RANS-Informed Analytical Methods for Fan Broadband Noise Prediction: Part II–Influence of the Acoustic Models
,”
Acoustics
,
2
(
3
), pp.
617
649
. https://www.mdpi.com/2624-599X/2/3/33
18.
Lewis
,
D.
,
Moreau
,
S.
,
Jacob
,
M. C.
, and
Sanjosé
,
M.
,
2021
, “
ACAT1 Fan Stage Broadband Noise Prediction Using Large-Eddy Simulation and Analytical Models
,”
AIAA. J.
,
60
(
1
), pp.
1
21
.
19.
Tucker
,
P. G.
, and
Wang
,
Z. N.
,
2020
, “
Eddy Resolving Strategies in Turbomachinery and Peripheral Components
,”
ASME J. Turbomach.
,
143
(
1
), p.
010801
.
20.
Envia
,
E.
,
Wilson
,
A. G.
, and
Huff
,
D. L.
,
2004
, “
Fan Noise: a Challenge to CAA
,”
Int. J. Computat. Fluid Dyn.
,
18
(
6
), pp.
471
480
.
21.
Cambier
,
L.
,
Heib
,
S.
, and
Plot
,
S.
,
2013
, “
The Onera ElsA CFD Software: Input From Research and Feedback From Industry
,”
Mech. Indus.
,
14
(
3
), pp.
159
174
.
22.
Deck
,
S.
,
Gand
,
F.
,
Brunet
,
V.
, and
Ben Khelil
,
S.
,
2014
, “
High-Fidelity Simulations of Unsteady Civil Aircraft Aerodynamics: Stakes and Perspectives. Application of Zonal Detached Eddy Simulation
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
372
(
2022
), p.
20130325
.
23.
Riéra
,
W.
,
Marty
,
J.
,
Castillon
,
L.
, and
Deck
,
S.
,
2016
, “
Zonal Detached-Eddy Simulation Applied to the Tip-Clearance Flow in an Axial Compressor
,”
AIAA. J.
,
54
(
8
), pp.
2377
2391
.
24.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), p.
181
.
25.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
30th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 6–9
, p.
439
.
26.
Posson
,
H.
, and
Roger
,
M.
,
2007
, “
Parametric Study of Gust Scattering and Sound Transmission Through a Blade Row
,”
13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference)
,
Rome, Italy
,
May 21–23
, p.
3690
.
27.
Hussain
,
A. K. M. F.
, and
Reynolds
,
W. C.
,
1970
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow
,”
J. Fluid. Mech.
,
41
(
2
), pp.
241
258
.
28.
Gand
,
F.
,
2012
, “
Zonal Detached Eddy Simulation of a Civil Aircraft With a Deflected Spoiler
,”
AIAA. J.
,
51
(
3
), pp.
697
706
.
29.
Verrière
,
J.
,
Gand
,
F.
, and
Deck
,
S.
,
2016
, “
Zonal Detached-Eddy Simulations of a Dual-Stream Jet
,”
AIAA. J.
,
54
(
10
), pp.
3176
3190
.
30.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA. J.
,
32
(
8
), pp.
1598
1605
.
31.
Smith
,
B.
,
1994
, “
A Near Wall Model for the K-l Two Equation Turbulence Model
,”
Fluid Dynamics Conference
,
Colorado Springs, CO
,
June 20–23
, p.
2386
.
You do not currently have access to this content.