Abstract

A set of foam metal casing treatment (FMCT) has been investigated to assess the stability improvement and noise reduction on an axial compressor. Three FMCTs with different PPI (Pores Per Inch), 20, 35, and 50, are tested experimentally. Two installation locations of foam metal in the casing are also considered and investigated. At location 1, it is found that the FMCT improves the stall margin by 5.4–8.7%, and the attenuation of compressor noise is up to 5 dB. At location 2, the stall margin is extended by 22.2–37.1% but increasing the noise mostly. Besides, foam metal at location 1 causes less efficiency loss than that at location 2. Based on the analysis in near-casing pressure distribution, spanwise performance comparison, and stall process, the mechanism of the FMCT for enhancing the compressor stability is also discussed.

References

1.
Paduano
,
J. D.
,
Greitzer
,
E. M.
, and
Epstein
,
A. H.
,
2001
, “
Compression System Stability and Active Control
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
491
517
.
2.
Tan
,
C. S.
,
Day
,
I. J.
,
Morris
,
S.
, and
Wadia
,
A.
,
2010
, “
Spike-Type Compressor Stall Inception, Detection, and Control
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
275
300
.
3.
Koch
,
C. C.
,
1970
, “
Experimental Evaluation of Outer Case Blowing or Bleeding of Single Stage Axial Flow Compressor, Part VI Final Report
,” NASA Report No. CR-54592.
4.
Hathaway
,
M. D.
,
2007
, “
Passive Endwall Treatments for Enhancing Stability
,” NASA Report No. TM-2007-214409.
5.
Takata
,
H.
, and
Tsukuda
,
H.
,
1977
, “
Stall Margin Improvement by Casing Treatment—Its Mechanism and Effectiveness
,”
ASME J. Eng. Power
,
99
(
1
), pp.
121
133
.
6.
Smith
,
G. D. J.
, and
Cumpsty
,
N. A.
,
1984
, “
Flow Phenomena in Compressor Casing Treatment
,”
ASME J. Eng. Power
,
106
(
3
), pp.
532
541
.
7.
Muller
,
M. W.
,
Schiffer
,
H.
, and
Hah
,
C.
,
2007
, “
Effect of Circumferential Grooves on the Aerodynamic Performance of an Axial Single-Stage Transonic Compressor
,”
Proceedings of the ASME Turbo Expo 2007
,
Montreal, Canada
,
May 14–17
, pp.
115
124
.
8.
Rolfes
,
M.
,
Lange
,
M.
,
Vogeler
,
K.
, and
Mailach
,
R.
,
2017
, “
Experimental and Numerical Investigation of a Circumferential Groove Casing Treatment in a Low-Speed Axial Research Compressor at Different Tip Clearances
,”
ASME J. Turbomach.
,
139
(
12
), p.
121009
.
9.
Houghton
,
T. O.
, and
Day
,
I. J.
,
2011
, “
Enhancing the Stability of Subsonic Compressors Using Casing Grooves
,”
ASME J. Turbomach.
,
133
(
2
), p.
021007
.
10.
Du
,
J.
,
Li
,
J.
,
Gao
,
L.
,
Lin
,
F.
, and
Jingyi
,
C.
,
2016
, “
The Impact of Casing Groove Location on Stall Margin and Tip Clearance Flow in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
138
(
12
), p.
121007
.
11.
Sakuma
,
Y.
,
Watanabe
,
T.
, and
Himeno
,
T.
,
2013
, “
Numerical Analysis of Flow in a Transonic Compressor With a Single Circumferential Casing Groove: Influence of Groove Location and Depth on Flow Instability
,”
ASME J. Turbomach.
,
136
(
3
), p.
031017
.
12.
Hah
,
C.
,
2018
, “
The Inner Workings of Axial Casing Grooves in a One and a Half Stage Axial Compressor With a Large Rotor Tip Gap: Changes in Stall Margin and Efficiency
,”
ASME J. Turbomach.
,
141
(
1
), p.
011001
.
13.
McDougall
,
N. M.
,
Cumpsty
,
N. A.
, and
Hynes
,
N. P.
,
1990
, “
Stall Inception in Axial Compressors
,”
ASME J. Turbomach.
,
112
(
1
), pp.
116
123
.
14.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.
15.
Sun
,
X. F.
,
Sun
,
D. K.
,
Liu
,
X. H.
,
Yu
,
W. W.
, and
Wang
,
X.
,
2014
, “
Theory of Compressor Stability Enhancement Using Novel Casing Treatment, Part 1: Methodology
,”
AIAA J. Propul. Power
,
30
(
5
), pp.
1224
1235
.
16.
Sun
,
D. K.
,
Liu
,
X. H.
,
Jin
,
D. H.
,
Gui
,
X. M.
, and
Sun
,
X. F.
,
2014
, “
A Theory of Compressor Stability Enhancement Using Novel Casing Treatment, Part 2: Experiment
,”
AIAA J. Propul. Power
,
30
(
5
), pp.
1236
1247
.
17.
Singh
,
S.
, and
Bhatnagar
,
N.
,
2018
, “
A Survey of Fabrication and Application of Metallic Foams
,”
J. Porous Mater.
,
25
(
2
), pp.
537
554
.
18.
Ashby
,
M. G.
,
2000
,
Metal Foams, a Design Guide
,
Butterworth Heinemann Press
,
Oxford, UK
.
19.
Sueki
,
T.
,
Takaishi
,
T.
,
Ikeda
,
M.
, and
Aeai
,
N.
,
2010
, “
Application of Porous Material to Reduce Aerodynamic Sound Form Bluff Bodies
,”
Fluid Dyn. Res.
,
42
(
1
), pp.
1
14
.
20.
Sutliff
,
D. L.
, and
Jones
,
M. G.
,
2009
, “
Low-Speed Fan Noise Attenuation From a Foam-Metal Liner
,”
AIAA J. Aircr.
,
46
(
4
), pp.
1381
1394
.
21.
Sutliff
,
D. L.
,
Jones
,
M. G.
, and
Hartley
,
T. C.
,
2013
, “
High-Speed Turbofan Noise Reduction Using Foam-Metal Liner Over-the-Rotor
,”
AIAA J. Aircr.
,
50
(
5
), pp.
1491
1503
.
22.
Xu
,
C.
, and
Mao
,
Y. J.
,
2016
, “
Passive Control of Centrifugal Fan Noise by Employing Open-Cell Metal Foam
,”
Appl. Acoust.
,
103
(
A
), pp.
10
19
.
23.
Xu
,
C.
, and
Mao
,
Y. J.
,
2016
, “
Experimental Investigation of Metal Foam for Controlling Centrifugal Fan Noise
,”
Appl. Acoust.
,
104
, pp.
182
192
.
24.
Inoue
,
M.
, and
Kuroumaru
,
M.
,
1989
, “
Structure of Tip Clearance Flow in an Isolated Axial Compressor Rotor
,”
ASME J. Turbomach.
,
111
(
7
), pp.
250
256
.
25.
He
,
L.
,
1997
, “
Computational Study of Rotating-Stall Inception in Axial Compressors
,”
AIAA J. Propul. Power
,
13
(
1
), pp.
31
38
.
You do not currently have access to this content.