Abstract

A volute's loss coefficient is highly sensitive to Mach number, circumferential velocity, and flowrate at volute inlet. In case of a backswept impeller, these parameters are coupled to each other. Therefore, in order to investigate the effects of flowrate and flow angle separately, one would have to vary the diffuser width together with the flowrate, keeping the flow angle constant. This corresponds to coupling the volute with aerodynamically similar impellers, designed for higher and lower flowrates. Since this is elaborate, there is no adequate study available in open literature, assessing a volute's global loss map. In this work, a new numerical approach for the prediction of a volute's representative loss map is presented: The volute is calculated by means of steady computational fluid dynamics (CFD) as a standalone component. The inlet boundary conditions are carefully selected by means of one-dimensional calculations (1D) and applied together with different diffuser widths. This allows for the separate investigation of the impacts of flow angle, flowrate, and Mach number. Validation against full-stage CFD confirms the applicability of the standalone model. The results exhibit that minimum losses do not necessarily occur at the theoretical matching point but when the volute is either smaller or bigger, depending on the inlet flow angle. Investigations of the loss mechanisms at different operating conditions provide useful guidelines for volute design. Finally, the validity of these study's findings for volutes with different geometrical features is examined by comparison with experimental data as well as with full-stage CFD.

References

1.
Bowerman
,
R. D.
, and
Acosta
,
A. J.
,
1957
, “
Effect of the Volute on Performance of a Centrifugal-Pump Impeller
,”
Transactions of the ASME
, pp.
1057
1069
, https://resolver.caltech.edu/CaltechAUTHORS:20140808-115339300
2.
Stiefel
,
W.
,
1972
, “
Experiences in the Development of Radial Compressors
”,
Von Karman Institute for Fluid Dynamics, Lecture Series 50: Advanced Radial Compressors
.
3.
Mishina
,
H.
, and
Gyobu
,
I.
,
1978
, “
Performance Investigations of Large Capacity Centrifugal Compressors
”,
ASME
Paper No. 78-GT-3
.
4.
Braembussche
,
V. d.
,
Hände
,
R. A.
, and
M
,
B.
,
1990
, “
Experimental and Theoretical Study of the Swirling Flow in Centrifugal Compressor Volutes
,”
ASME J. Turbomach.
,
112
(
1
), pp.
38
43
.
5.
Ayder
,
E.
,
Van den Braembussche
,
R.
, and
Brasz
,
J. J.
,
1993
, “
Experimental and Theoretical Analysis of the Flow in a Centrifugal Compressor Volute
,”
ASME J. Turbomach.
,
115
(
3
), pp.
582
589
.
6.
Hagelstein
,
D.
,
Hillewaert
,
K.
,
Van den Braembussche
,
R. A.
,
Engeda
,
A.
,
Keiper
,
R.
, and
Rautenberg
,
M.
,
2000
, “
Experimental and Numerical Investigation of the Flow in a Centrifugal Compressor Volute
,”
ASME J. Turbomach.
,
122
(
1
), pp.
22
31
.
7.
Reunanen
,
A.
,
2001
, “
Experimental and Numerical Analysis of Different Volutes in a Centrifugal Compressor
”,
Ph.D. thesis, Lappeenranta University of Technology
. https://lutpub.lut.fi/handle/10024/31209
8.
Steglich
,
T.
,
Kitzinger
,
J.
,
Seume
,
J. R.
,
Van den Braembussche
,
R. A.
, and
Prinsier
,
J.
,
2005
, “
Improved Diffuser/Volute Combinations for Centrifugal Compressors
”,
ASME
Paper No. GT2005-68894
.
9.
Xu
,
C.
, and
Amano
,
R. S.
,
2007
, “
Computational Analysis of Scroll Tongue Shapes to Compressor Performance by using different Turbulence models
”,
ASME
Paper No. GT2007-28224
.
10.
Bartelt
,
M.
,
Kwitschinski
,
T.
,
Ceyrowsky
,
T.
,
Grates
,
D.
, and
Seume
,
J. R.
,
2011
, “
Experimental and Numerical Investigation of Different Rectangular Volute Geometries for Large Radial Compressors
”,
ASME
Paper No. GT2011-46296
.
11.
Mojaddam
,
M.
, and
Hajilouy-Benisi
,
A.
,
2016
, “
Experimental and Numerical Flow Field Investigation Through Two Types of Radial Flow Compressor Volutes
,”
Exp. Therm. Fluid Sci.
,
78
, pp.
137
146
.
12.
Heinrich
,
M.
, and
Schwarze
,
R.
,
2015
, “
Scripted CFD-Tool for the Automated Design of Volutes for Centrifugal Compressors
”,
ASME
Paper No. GT2015-42629
.
13.
Heinrich
,
M.
, and
Schwarze
,
R.
,
2016
, “
Genetic Algorithm Optimization of the Volute Shape of a Centrifugal Compressor
,”
Int. J. Rot. Mach.
,
2016
, pp.
1
13
.
14.
Heinrich
,
M.
, and
Schwarze
,
R.
,
2017
, “
Genetic Optimization of the Volute of a Centrifugal Compressor
,”
Proceedings of ETC 12, Paper No. ETC2017-072
.
15.
Lin
,
Y.
,
Zheng
,
X. Q.
,
Jin
,
L.
,
Tamaki
,
H.
, and
Kawakubo
,
T.
,
2012
, “
A Novel Experimental Method to Evaluate the Impact of Volute’s Asymmetry on the Performance of a High Pressure Ratio Turbocharger Compressor
,”
Sci. China Technol. Sci.
,
55
(
6
), pp.
1695
1700
.
16.
Zheng
,
X. Q.
,
Huenteler
,
J.
,
Yang
,
M. Y.
,
Zhang
,
Y. J.
, and
Bamba
,
T.
,
2010
, “
Influence of the Volute on the Flow in a Centrifugal Compressor of a High-Pressure Ratio Turbocharger
,”
Proc. Inst. Mech. Eng., Part A
,
224
(
8
), pp.
1157
1169
.
17.
Tamaki
,
H.
,
Unno
,
M.
,
Zheng
,
X. Q.
, and
Zhang
,
Y.
,
2013
, “
Effect of Circumferential Static Pressure Non-uniformity Caused by a Volute on Flow in High Pressure Ratio Centrifugal Compressor With Vaneless and Vaned Diffuser
”,
ASME
Paper No. GT2013-95263
.
18.
Shu
,
M.
,
Yang
,
M.
,
Deng
,
K.
,
Zheng
,
X. Q.
, and
Martinez-Botas
,
R. F.
,
2018
, “
Performance Analysis of a Centrifugal Compressor Based on Circumferential Flow Distortion Induced by Volute
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
122603
.
19.
Ceyrowsky
,
T.
,
Hildebrandt
,
A.
, and
Schwarze
,
R.
,
2018
, “
Numerical Investigation of the Circumferential Pressure Distortion Induced by a Centrifugal Compressor’s External Volute
”,
ASME
Paper No. GT2018-75919
.
20.
Ceyrowsky
,
T.
,
Hildebrandt
,
A.
, and
Schwarze
,
R.
,
2019
, “
A New 1D Method for Assessing Volute Induced Circumferential Pressure Distortion at the Exit of a Centrifugal Impeller
,”
Proceedings of ETC 13, Paper No. ETC2019-437
.
21.
Weber
,
C. R.
, and
Koronowski
,
M. E.
,
1986
, “
Meanline Performance Prediction of Volutes in Centrifugal Compressors
”,
ASME
Paper No. 86-GT-216
.
22.
Japikse
,
D.
,
1996
,
Centrifugal Compressor Design and Performance
,
Concepts Eti Inc
,
Wilder, Vt.
.
23.
Yang
,
Z.
, and
Shih
,
T. H.
,
1993
, “
New Time Scale Based k-Epsilon Model for Near-Wall Turbulence
,”
AIAA J.
,
31
(
7
), pp.
1191
1198
.
24.
Chen
,
H.
, and
Li
,
P.
,
2013
, “
Compressor Housing Design for Small Turbocharger Compressors
”,
ASME Paper No. GT2013-94250
.
You do not currently have access to this content.