Abstract

Experimental and numerical methods were used to investigate the aerodynamic effects of a near-casing streamwise incoming vortex flow on the tip leakage flow of different tip geometries in an unshrouded high-pressure turbine. A flat tip, a cavity tip, and a suction side winglet tip were investigated with the quasi-steady method first. A swirl generator was used to produce the incoming vortex in a linear cascade. In the flat tip case, the incoming vortex interacts with the tip leakage flow and the two vortices gradually mix together. The tip leakage loss is reduced due to the streamwise momentum supplement within the tip leakage vortex core. For the cavity tip, the tip leakage vortex appears at a location relatively downstream in the blade passage compared with the flat tip and no evident vortex interaction is observed. The incoming vortex causes extra viscous dissipation within the blade passage and increases the aerodynamic loss for the cavity tip. For the winglet tip, the extension of the suction side winglet tends to push the incoming vortex and the tip leakage vortex move and mix together, thus reducing the loss. Then, the effects of periodic unsteady vortex transportations were investigated by conducting unsteady Reynolds-Averaged Navier–Stokes (URANS) simulations. The incoming vortex is stretched as it transports downstream. The unsteady incoming vortex is easier to interact with the tip leakage vortex for the winglet tip. As a result, the winglet tip is the most efficient tip design with unsteady incoming flow among the three tips and achieves a 3.7% reduction of mixed-out loss coefficient compared with the flat tip, larger than 2.8% reduction in the uniform inlet condition. The detailed loss mechanism is discussed in this paper.

References

1.
Tallman
,
J.
, and
Lakshminarayana
,
B.
,
2001
, “
Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics: Part I—Effect of Tip Clearance Height
,”
ASME J. Turbomach.
,
123
(
2
), pp.
314
323
.
2.
Tallman
,
J.
, and
Lakshminarayana
,
B.
,
2001
, “
Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics: Part II—Effect of Outer Casing Relative Motion
,”
ASME J. Turbomach.
,
123
(
2
), pp.
324
333
.
3.
Tan
,
C. S.
,
Day
,
I.
,
Morris
,
S.
, and
Wadia
,
A.
,
2010
, “
Spike-Type Compressor Stall Inception, Detection, and Control
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
275
300
.
4.
Denton
,
J.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME Paper No. 93-GT-435
.
5.
Key
,
N.
, and
Arts
,
T.
,
2006
, “
Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at High-Speed Conditions
,”
ASME J. Turbomach.
,
128
(
2
), pp.
213
220
.
6.
Yaras
,
M. L.
, and
Sjolander
,
S. A.
,
1991
, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades. Part I: Tip Gap Flow
,”
ASME Paper No. 91-GT-127
.
7.
Yaras
,
M. L.
, and
Sjolander
,
S. A.
,
1991
, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades. Part II: Downstream Flow Field and Blade Loading
,”
ASME Paper No. 91-GT-128
.
8.
Heyes
,
F. J. G.
,
Hodson
,
H. P.
, and
Dailey
,
G. M.
,
1991
, “
The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades
,”
ASME Paper No. 91-GT-135
.
9.
Zhou
,
C.
, and
Hodson
,
H.
,
2012
, “
Squealer Geometry Effects on Aerothermal Performance of Tip-Leakage Flow of Cavity Tips
,”
AIAA J. Propul. Power
,
28
(
3
), pp.
556
567
.
10.
Virdi
,
A. S.
,
Zhang
,
Q.
,
He
,
L.
,
Li
,
H. D.
, and
Hunsley
,
R.
,
2015
, “
Aerothermal Performance of Shroudless Turbine Blade Tips With Relative Casing Movement Effects
,”
AIAA J. Propul. Power
,
31
(
2
), pp.
527
536
.
11.
Schabowski
,
Z.
, and
Hodson
,
H.
,
2007
, “
The Reduction of Over Tip Leakage Loss in Unshrouded Axial Turbines Using Winglet and Squealers
,”
ASME Paper No. GT2007-27623
.
12.
Harvey
,
N. W.
, and
Ramsden
,
K.
,
2001
, “
A Computational Study of a Novel Turbine Rotor Partial Shroud
,”
ASME J. Turbomach.
,
123
(
3
), pp.
534
543
.
13.
Zhou
,
C.
, and
Zhong
,
F. P.
,
2017
, “
A Novel Suction Side Winglet Design Method for High Pressure Turbine Rotor Tips
,”
ASME J. Turbomach.
,
139
(
11
), p.
111002
.
14.
Schabowski
,
Z.
, and
Hodson
,
H.
,
2014
, “
The Reduction of Over Tip Leakage Loss in Unshrouded Axial Turbines Using Winglets and Squealers
,”
ASME J. Turbomach.
,
136
(
4
), p.
041001
.
15.
Coull
,
J. D.
,
Atkins
,
N. R.
, and
Hodson
,
H. P.
,
2014
, “
Winglets for Improved Aerothermal Performance of High Pressure Turbines
,”
ASME J. Turbomach.
,
136
(
9
), p.
091007
.
16.
Booth
,
T. C.
,
Dodge
,
P. R.
, and
Hepworth
,
H. K.
,
1982
, “
Rotor-Tip Leakage: Part I—Basic Methodology
,”
ASME J. Eng. Power
,
104
(
1
), pp.
154
161
.
17.
Zeschky
,
J.
, and
Gallus
,
H. E.
,
1991
, “
Effects of Stator Wakes and Spanwise Nonuniform Inlet Conditions on the Rotor Flow of an Axial Turbine Stage
,”
ASME J. Turbomach.
,
115
(
1
), pp.
128
136
.
18.
Volino
,
R. J.
,
Galvin
,
C. D.
, and
Brownell
,
C. J.
,
2014
, “
Effects of Unsteady Wakes on Flow Through High Pressure Turbine Passage With and Without Tip Gaps
,”
ASME Paper No. GT2014-27006
.
19.
Payne
,
S. J.
,
2001
, “
Unsteady Loss in a High Pressure Stage
,”
Ph.D. Dissertation
,
University Oxford
.
20.
Zhou
,
K.
, and
Zhou
,
C.
,
2018
, “
Unsteady Effects of Vortex Interaction on Tip Leakage Vortex Breakdown and Its Loss Mechanism
,”
Aerospace Sci. Technol.
,
82–83
(
2018
), pp.
363
371
.
21.
Yoon
,
S.
,
Vandeputte
,
T.
,
Mistry
,
H.
,
Ong
,
J.
, and
Stein
,
A.
,
2016
, “
Loss Audit of a Turbine Stage
,”
ASME J. Turbomach.
,
138
(
5
), p.
051004
.
22.
Chaluvadi
,
V. S. P.
,
Kalfas
,
A. I.
, and
Hodson
,
H. P.
,
2004
, “
Vortex Transport and Blade Interactions in High Pressure Turbines
,”
ASME J. Turbomach.
,
126
(
3
), pp.
395
405
.
23.
Intaratep
,
N.
,
Devenport
,
W.
, and
Staubs
,
J.
,
2004
, “
The Tip Leakage Vortex Shed From an Unsteady Tip Clearance Flow
,”
AIAA Paper No. AIAA 2004-2430
.
24.
Ma
,
R.
, and
Devenport
,
W.
,
2006
, “
Unsteady Periodic Behavior of a Disturbed Tip-Leakage Flow
,”
AIAA J.
,
44
(
5
), pp.
1073
1086
.
25.
Ma
,
R.
, and
Devenport
,
W.
,
2007
, “
Tip Gap Effects on the Unsteady Behavior of a Tip-Leakage Vortex
,”
AIAA J.
,
45
(
7
), pp.
1713
1724
.
26.
Ma
,
R.
, and
Devenport
,
W.
,
2008
, “
Unsteady Aperiodic Behavior of a Periodically Disturbed Tip Leakage Vortex
,”
AIAA J.
,
46
(
5
), pp.
1025
1038
.
27.
Zhou
,
K.
, and
Zhou
,
C.
,
2018
, “
Aerodynamic Interaction Between Incoming Vortex and Tip Leakage Flow in a Turbine Cascade
,”
ASME J. Turbomach.
,
140
(
11
), p.
111004
.
28.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
29.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “Ten Years of Industrial Experience With the SST Turbulence Model,”
Turbulence Heat Mass Transfer
,
Begell House Inc.
,
Danbury, CT
, vol.
4
, pp.
625
632
.
30.
Zhang
,
Q.
,
He
,
L.
, and
Rawlinson
,
A.
,
2014
, “
Effects of Inlet Turbulence and End-Wall Boundary Layer on Aerothermal Performance of a Transonic Turbine Blade Tip
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
052603
.
31.
Zhong
,
F.
, and
Zhou
,
C.
,
2017
, “
Effects of Tip Gap Size on the Aerodynamic Performance of a Cavity-Winglet Tip in a Turbine Cascade
,”
ASME J. Turbomach.
,
139
(
10
), p.
101009
.
32.
Clark
,
J. P.
, and
Grover
,
E. A.
,
2006
, “
Assessing Convergence in Predictions of Periodic-Unsteady Flowfields
,”
ASME J. Turbomach.
,
129
(
4
), pp.
740
749
.
33.
Stieger
,
R. D.
, and
Hodson
,
H. P.
,
2005
, “
The Unsteady Development of a Turbulent Wake Through a Downstream Low-Pressure Turbine Blade Passage
,”
ASME J. Turbomach.
,
127
(
2
), pp.
388
394
.
34.
Zhou
,
K.
, and
Zhou
,
C.
,
2016
, “
Transport Mechanism of Hot Streaks and Wakes in a Turbine Cascade
,”
AIAA J. Propul. Power
,
32
(
5
), pp.
1045
1054
.
You do not currently have access to this content.