Abstract

Numerical results are presented from the National Aeronautics and Space Administration (NASA) Glenn Research Center's in-house turbomachinery code Glenn-HT applied to the variable-speed power turbine (VSPT) experiment at the NASA Transonic Turbine Blade Cascade Facility. The main goal of this paper is to implement a digital filtering method to generate turbulence upstream and a subgrid model (localized dynamic k-equation model (LDKM)) in the framework of large-eddy simulation (LES) in order to investigate the effect of inflow turbulence on the transition seen in the VSPT experimental data at the cruise condition (incidence angle of 40 deg and Tu = 0.5%, 5%, 10%, and 15%). Although the boundary layer on the suction side and pressure side of the blades is initially laminar due to favorable pressure gradient, the laminar flow can transition to turbulent flow past a separation zone on the suction side or by natural or bypass transition. This process determines the total pressure losses in the wake. Therefore, it is desirable to develop a reliable prediction tool to accurately capture the transition mechanism in blade rows operated under the conditions of low Reynolds number and at a variety of freestream turbulence conditions. Our numerical studies reveal that the location of separation is rather insensitive to the level of Tu; however, the effect of increasing Tu seems to be in reducing the size and ultimately suppressing the separation bubble. In addition, we performed spectral analysis to identify the peak frequencies in the region where the separation bubble is formed, which provides valuable insights into the transition/separation mechanism.

References

1.
Tyacke
,
J.
,
Vadlamani
,
N. R.
,
Trojak
,
W.
,
Watson
,
R.
,
Ma
,
Y.
, and
Tucker
,
P. G.
,
2019
, “
Turbomachinery Simulation Challenges and the Future
,”
Prog. Aerosp. Sci.
,
110
, p.
10054
.
2.
Laskowski
,
G. M.
,
Kopriva
,
J.
,
Michelassi
,
V.
,
Shankaran
,
S.
,
Paliath
,
U.
,
Bhaskaran
,
R.
,
Wang
,
Q.
,
Talnikar
,
C.
,
Wang
,
Z.
, and
Jia
,
F.
,
2016
, “
Future Directions of High Fidelity CFD for Aerothermal Turbomachinery Analysis and Design
,”
Proceedings of 46th AIAA Fluid Dynamics Conference
, AIAA 2016-3322.
3.
Volino
,
R.
,
2002
, “
Separated Flow Transition Under Simulated Low-Pressure Turbine Airfoil Conditions—Part 1: Mean Flow and Turbulence Statistics
,”
ASME J. Turbomach.
,
124
(
4
), pp.
645
655
.
4.
Simon
,
T. W.
,
Qiu
,
S.
, and
Yuan
,
K.
,
2000
, “
Measurements in a Transitional Boundary Layer Under Low-Pressure Turbine Conditions
,” NASA/CR-2000-209957.
5.
Sandberg
,
R. D.
,
Pichler
,
R.
, and
Chen
,
L.
,
2012
, “
Assessing the Sensitivity of Turbine Cascade Flow to Inflow Disturbances Using Direct Numerical Simulation
,”
Proceedings of the 13th International Symposium for Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity in Turbomachinery (ISUAAAT)
,
Japan
,
Sept. 11–14
.
6.
Ameri
,
A.
,
2014
, “
Simulation of VSPT Experiment Under High and Low Free-Stream Turbulence Conditions
,”
Proceedings of the 50th Joint Propulsion Conference and Exhibit
, AIAA Paper 2014-3935.
7.
Medic
,
G.
, and
Sharma
,
O.
,
2012
, “
Large-Eddy Simulation of Flow in a Low-Pressure Turbine Cascade
,”
Proceedings of the ASME Turbo Expo
,
Copenhagen, Denmark
, June, Paper No. GT2012-68878.
8.
Medic
,
G.
,
Joo
,
J.
,
Lele
,
S. K.
, and
Sharma
,
O. P.
,
2012
, “
Prediction of Heat Transfer in a Turbine Cascade With High Levels of Free-Stream Turbulence
,”
Proceedings of the Summer Program, Center for Turbulence Research
,
Stanford, CA
.
9.
Cay
,
S.
, and
Gungor
,
A. G.
,
2017
, “
Numerical Investigation of Inlet Boundary Condition Effects on Secondary Flows in Low Pressure Turbines
,”
Proceedings of the 9th Ankara International Aerospace Conference
, AIAC-2017-068.
10.
Kanani
,
Y.
,
Acharya
,
S.
, and
Ames
,
F.
,
2019
, “
Large Eddy Simulation of the Laminar Heat Transfer Augmentation on the Pressure Side of a Turbine Vane Under Freestream Turbulence
,”
ASME J. Turbomach.
,
141
(
4
), p.
041004
.
11.
Varty
,
J. W.
, and
Ames
,
F. E.
,
2016
, “
Experimental Heat Transfer Distributions Over an Aft Loaded Vane With a Large Leading Edge at Very High Turbulence Levels
,”
ASME
Paper No. IMECE2016-67029.
12.
Ruiyu
,
L.
,
Limin
,
G.
,
Lei
,
Z.
,
Chi
,
M.
, and
Shiyan
,
L.
,
2019
, “
Dominating Unsteadiness Flow Structures in Corner Separation Under High Mach Number
,”
AIAA J.
,
57
(
7
), pp.
2923
2932
.
13.
Cui
,
J.
,
Nagabhushana Rao
,
V.
, and
Tucker
,
P.
,
2016
, “
Numerical Investigation of Contrasting Flow Physics in Different Zones of a High-Lift Low-Pressure Turbine Blade
,”
ASME J. Turbomach.
,
138
(
1
), p.
011003
.
14.
McVetta
,
A. B.
,
Giel
,
P. W.
, and
Welch
,
G. E.
,
2013
, “
Aerodynamic Measurements of a Variable-Speed Power-Turbine Blade Section in a Transonic Turbine Cascade at Low Inlet Turbulence
,”
Proceedings of the ASME Turbo Expo
,
San Antonio, TX
,
June
, Paper No. GT2013-94695.
15.
Flegel
,
A. B.
,
Giel
,
P. W.
, and
Welch
,
G. E.
,
2014
, “
Aerodynamic Effects of High Turbulence Intensity on a Variable-Speed Power-Turbine Blade With Large Incidence and Reynolds Number Variations
,”
Proceedings of the 50th Joint Propulsion Conference and Exhibit
, AIAA Paper 2014-3933.
16.
Thurman
,
D.
,
Flegel
,
A.
, and
Giel
,
P.
,
2014
, “
Inlet Turbulence and Length Scale Measurements in a Large-Scale Transonic Turbine Cascade
,”
Proceedings of the 50th AIAA Joint Propulsion Conference
, AIAA 2014-3934.
17.
Ameri
,
A.
,
2018
, “
Implicit-LES Simulation of Variable-Speed Power Turbine Cascade for Low Free-Stream Turbulence Conditions
,”
Proceedings of the ASME Turbo Expo
,
Oslo, Norway
,
June
, Paper No. GT2018-77120.
18.
Klein
,
M.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2003
, “
A Digital Filter Based Generation of Inflow Data for Spatially Developing Direct Numerical or Large Eddy Simulations
,”
J. Comput. Phys.
,
186
(
2
), pp.
652
665
.
19.
Comte-Bellot
,
G.
, and
Corrsin
,
S.
,
1971
, “
Simple Eulerian Time Correlation of Full-and Narrow-Band Velocity Signals in Grid-Generated, Isotropic Turbulence
,”
J. Fluid Mech.
,
48
(
2
), pp.
273
337
.
20.
Steinthorsson
,
E.
,
Liou
,
M.-S.
, and
Povinelli
,
L.
,
1993
, “
Development of an Explicit Multiblock/Multigrid Flow Solver for Viscous Flows in Complex Geometries
,”
Proceedings of the 29th Joint Propulsion Conference and Exhibit
, AIAA Paper 1993-2380.
21.
Liou
,
M.-S.
,
2006
, “
A Sequel to AUSM, Part II: AUSM+-Up for All Speeds
,”
J. Comput. Phys.
,
214
(
1
), pp.
137
170
.
22.
Kim
,
W.-W.
, and
Menon
,
S.
,
1995
, “
A New Dynamic One-Equation Subgrid-Scale Model for Large Eddy Simulations
,”
Proceedings of the 33rd AIAA Aerospace Sciences Meeting and Exhibit
,
Jan.
, AIAA Paper 1995-356.
23.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids
,
4
(
3
), pp.
633
635
.
24.
Sankaran
,
V.
, and
Menon
,
S.
,
2002
, “
LES of Spray Combustion in Swirling Flows
,”
J. Turbul.
,
3
, p.
N11
.
25.
Patel
,
N.
, and
Menon
,
S.
,
2008
, “
Simulation of Spray-Turbulence-Flame Interactions in a Lean Direct Injection Combustor
,”
Combust. Flame
,
153
(
1–2
), pp.
228
257
.
26.
Kemenov
,
K.
, and
Menon
,
S.
,
2006
, “
Explicit Small-Scale Velocity Simulation for High Reynolds Number Turbulent Flows
,”
J. Comput. Phys.
,
220
(
1
), pp.
290
311
.
27.
Gryngartern
,
L.
, and
Menon
,
S.
,
2013
, “
A Generalized Approach for Sub- and Super-Critical Flows Using the Local Discontinuous Galerkin Method
,”
Comput. Methods Appl. Mech. Eng.
,
253
, pp.
169
185
.
28.
Miki
,
K.
, and
Menon
,
S.
,
2008
, “
Localized Dynamic Subgrid Closure for Simulation of Magnetohydrodynamic Turbulence
,”
Phys. Plasma
,
15
(
7
), p.
072306
.
29.
Lund
,
T.
,
Wu
,
X.
, and
Squires
,
D.
,
1998
, “
Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations
,”
J. Comput. Phys.
,
140
(
2
), pp.
233
258
.
30.
Pope
,
S.
,
2002
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
31.
Pope
,
S.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
, p.
32
35
.
32.
Bae
,
H.
Initial Conditions for Large-Eddy Simulation of Decaying Homogeneous Isotropic Turbulence
,” http://web.stanford.edu/∼hjbae/CBC
33.
Ameri
,
A.
,
2016
, “
Requirements for Large Eddy Simulation Computations of Variable-Speed Power Turbine Flows
,” Technical Report, NASA/CR, 2016-218962.
34.
Pichler
,
R.
,
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2016
, “
Assessment of Grid Resolution Requirements for Accurate Simulation of Disparate Scales of Turbulent Flow in Low-Pressure Turbines
,”
Proceedings of the ASME Turbo Expo
,
Seoul, South Korea
,
June
, Paper No. GT2016-56858.
35.
Coull
,
J. D.
, and
Hodson
,
H. P.
,
2010
, “
Unsteady Boundary-Layer Transition in Low-Pressure Turbines
,”
J. Fluid Mech.
,
681
, pp.
370
410
.
36.
Volino
,
R.
, and
Hultgren
,
L. S.
,
2001
, “
Measurements in Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions
,”
ASME J. Turbomach.
,
123
(
2
), pp.
189
197
.
37.
Praisner
,
T. J.
, and
Smith
,
C. R.
,
2006
, “
The Dynamics of the Horseshoe Vortex and Associated Endwall Heat Transfer—Part I: Temporal Behavior
,”
ASME J. Turbomach.
,
128
(
4
), pp.
747
754
.
38.
Volino
,
R. J.
,
2010
, “
Separated Flow Measurements on a Highly Loaded Low-Pressure Turbine Airfoil
,”
ASME J. Turbomach.
,
132
(
1
), p.
011007
.
39.
Volino
,
R. J.
,
2002
, “
Separated Flow Transition Under Simulated Low-Pressure Turbine Airfoil Conditions—Part 2: Mean Flow and Turbulence Statistics
,”
ASME J. Turbomach.
,
124
(
4
), pp.
656
663
.
You do not currently have access to this content.