Abstract

Air-cooled gas turbines employ bleed air from the compressor to cool vulnerable components in the turbine. The cooling flow, commonly known as purge air, is introduced at low radius, before exiting through the rim-seal at the periphery of the turbine discs. The purge flow interacts with the mainstream gas path, creating an unsteady and complex flowfield. Of particular interest to the designer is the effect of purge on the secondary-flow structures within the blade passage, the extent of which directly affects the aerodynamic loss in the stage. This paper presents a combined experimental and computational fluid dynamics (CFD) investigation into the effect of purge flow on the secondary flows in the blade passage of an optically accessible one-stage turbine rig. The experimental campaign was conducted using volumetric velocimetry (VV) measurements to assess the three-dimensional inter-blade velocity field; the complementary CFD campaign was carried out using unsteady Reynolds-averaged Navier–Stokes (URANS) computations. The implementation of VV within a rotating environment is a world first and offers an unparalleled level of experimental detail. The baseline flow-field, in the absence of purge flow, demonstrated a classical secondary flow-field: the rollup of a horseshoe vortex, with subsequent downstream convection of a pressure-side and suction-side leg, the former transitioning in to the passage vortex. The introduction of purge, at 1.7% of the mainstream flowrate, was shown to modify the secondary flow-field by enhancing the passage vortex, in both strength and span-wise migration. The computational predictions were in agreement with the enhancement revealed by the experiments.

References

1.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
11
26
. 10.1111/j.1749-6632.2001.tb05839.x
2.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
. 10.1115/1.3239704
3.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
. 10.1115/1.3262089
4.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
. 10.1115/1.2929299
5.
Schrewe
,
S.
,
Werschnik
,
H.
, and
Schiffer
,
H. P.
,
2013
, “
Experimental Analysis of the Interaction Between Rim Seal and Main Annulus Flow in a Low Pressure Two Stage Axial Turbine
,”
ASME J. Turbomach.
,
135
(
5
), p.
051003
. 10.1115/1.4023015
6.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
J. Propul. Power
,
22
(
2
), pp.
301
312
. 10.2514/1.16344
7.
Barigozzi
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
,
Maritano
,
M.
, and
Abram
,
R.
,
2013
, “
Purge Flow and Interface Gap Geometry Influence on the Aero-thermal Performance of a Rotor Blade Cascade
,”
Int. J. Heat Fluid Flow
,
44
, pp.
563
575
. 10.1016/j.ijheatfluidflow.2013.08.012
8.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High-Work Turbine
,”
ASME J. Turbomach.
,
132
(
2
), p.
021021
. 10.1115/1.4000485
9.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
, and
Gier
,
J.
,
2009
, “
Influence of Rim Seal Purge Flow on Performance of an Endwall-Profiled Axial Turbine
,”
Proceedings of ASME Turbo Expo 2009
,
Orlando, FL
,
June 8–12
, pp.
943
956
.
10.
Regina
,
K.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2012
, “
Experimental Investigation of Purge Flow Effects on a High Pressure Turbine Stage
,”
Proceedings of ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
, pp.
1509
1519
.
11.
de la Rosa Blanco
,
E.
,
Hodson
,
H. P.
, and
Vazquez
,
R.
,
2009
, “
Effect of the Leakage Flows and the Upstream Platform Geometry on the Endwall Flows of a Turbine Cascade
,”
ASME J. Turbomach.
,
131
(
1
), p.
011004
. 10.1115/1.2950052
12.
Popović
,
I.
, and
Hodson
,
H. P.
,
2012
, “
The Effects Of A Parametric Variation of the Rim Seal Geometry on the Interaction Between Hub Leakage and Mainstream Flows in HP Turbines
,”
Proceedings of ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
, pp.
1823
1833
.
13.
Woisetschläger
,
J.
, and
Göttlich
,
E.
,
2008
, “Recent Applications of Particle ImageVelocimetry to Flow Research in Thermal Turbomachinery,”
Particle Image Velocimetry: New Developments and Recent Applications
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, pp.
311
331
.
14.
Geis
,
T.
,
Rottenkolber
,
G.
,
Dittmann
,
M.
,
Richter
,
B.
,
Dullenkopf
,
K.
, and
Wittig
,
S.
,
2002
, “
Endoscopic PIV-Measurements in an Enclosed Rotor-Stator System With Pre-swirled Cooling Air
,”
Proceedings of the 11th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
.
15.
Kegalj
,
M.
, and
Schiffer
,
H.-P.
,
2009
, “
Endoscopic PIV Measurements in a Low Pressure Turbine Rig
,”
Experiments in fluids
,
47
(
4–5
), p.
689
. 10.1007/s00348-009-0712-8
16.
Wernet
,
M.
,
2000
, “
Development of Digital Particle Imaging Velocimetry for Use in Turbomachinery
,”
Experiments in Fluids
,
28
(
2
), pp.
97
115
. 10.1007/s003480050015
17.
Balzani
,
N.
,
Scarano
,
F.
,
Riethmuller
,
M.
, and
Breugelmans
,
F.
,
2000
, “
Experimental Investigation of the Blade-to-Blade Flow in a Compressor Rotor by Digital Particle Image Velocimetry
,”
ASME J. Turbomach.
,
122
(
4
), pp.
743
750
. 10.1115/1.1311283
18.
Chana
,
K. S.
,
Healey
,
N.
, and
Bryanston-Cross
,
P. J.
,
1998
, “
Particle Image Velocimetry Measurements From the Stator-Rotor Interaction Region of a High Pressure Transonic Turbine Stage at the DERA Isentropic Light Piston Facility
,”
AGARD Conference Proceedings 598, AGARD-CP-598
,
Brussels, Belgium
.
19.
Gottlich
,
E.
,
Woisetschlager
,
J.
,
Pieringer
,
P.
,
Hampel
,
B.
, and
Heitmeir
,
F.
,
2006
, “
Investigation of Vortex Shedding and Wake-Wake Interaction in a Transonic Turbine Stage Using Laser-Doppler-Velocimetry and Particle-Image-Velocimetry
,”
ASME J. Turbomach.
,
128
(
1
), pp.
178
187
. 10.1115/1.2103092
20.
Copenhaver
,
W.
,
Estevadeordal
,
J.
,
Gogineni
,
S.
,
Gorrell
,
S.
, and
Goss
,
L.
,
2002
, “
DPIV Study of Near-Stall Wake-Rotor Interactions in a Transonic Compressor
,”
Experiments in fluids
,
33
(
6
), pp.
899
908
. 10.1007/s00348-002-0503-y
21.
Bryanston-Cross
,
P. J.
,
Towers
,
C. E.
,
Judge
,
T. R.
,
Towers
,
D. P.
,
Harasgama
,
S. P.
, and
Hopwood
,
S. T.
,
1992
, “
The Application of Particle Image Velocimetry (PIV) in a Short Duration Transonic Annular Turbine Cascade
,”
ASME J. Turbomach.
,
114
(
3
), pp.
504
509
. 10.1115/1.2929173
22.
Carvalho Figueiredo
,
A. J.
,
Jones
,
R.
,
Sangan
,
C. M.
, and
Cleaver
,
D. J.
,
2020
, “
A Borescope Design Tool for Laser Measurements in Fluids
,”
Optics and Lasers in Engineering
,
127
, p.
105874
. 10.1016/j.optlaseng.2019.105874
23.
Jones
,
R.
,
Pountney
,
O.
,
Cleton
,
B.
,
Wood
,
L.
,
Schreiner
,
B.
,
Carvalho Figueiredo
,
A. J.
,
Scobie
,
J.
,
Cleaver
,
D.
,
Lock
,
G.
, and
Sangan
,
C.
, “
An Advanced Single-Stage Turbine Facility for Investigating non-Axisymmetric Contoured Endwalls in the Presence of Purge Flow
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121008
. 10.1115/1.4045087
24.
Discetti
,
S.
, and
Coletti
,
F.
,
2018
, “
Volumetric Velocimetry for Fluid Flows
,”
Meas. Sci. Technol.
,
29
(
4
),
042001
. 10.1088/1361-6501/aaa571
25.
Stellmacher
,
M.
, and
Obermayer
,
K.
,
2000
, “
A New Particle Tracking Algorithm Based on Deterministic Annealing and Alternative Distance Measures
,”
Exp. Fluids
,
28
(
6
), pp.
506
518
. 10.1007/s003480050412
26.
Carvalho Figueiredo
,
A. J.
,
Jones
,
R.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Lock
,
G. D.
,
Sangan
,
C. M.
, and
Cleaver
,
D. J.
,
2018
, “
Volumetric Velocimetry Measurements of Film Cooling Jets
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031021
. 10.1115/gt2018-75411
27.
Tropea
,
C.
,
Yarin
,
A. L.
, and
Foss
,
J. F.
,
2007
,
Springer Handbook of Experimental Fluid Mechanics
,
Springer Science & Business Media
,
Berlin
.
28.
Schreiner
,
B.
,
Wilson
,
M.
,
Li
,
Y.
, and
Sangan
,
C.
,
2020
, “
Effect of Purge on the Secondary Flow-Field of a Gas Turbine Blade-Row
,”
ASME J. Turbomach.
,
142
(
10
), p.
101006
. 10.1115/1.4047185
29.
Schreiner
,
B. D. J.
,
Wilson
,
M.
,
Li
,
Y. S.
, and
Sangan
,
C. M.
,
2019
, “
Design of Contoured Turbine Endwalls in the Presence of Purge Flow: A Feature-Based Approach
,”
Proceedings of ASME Turbo Expo 2019
,
Phoenix, AZ
,
June 17–21
GT2019-90443
.
30.
Graftieaux
,
L.
,
Michard
,
M.
, and
Grosjean
,
N.
,
2001
, “
Combining PIV, POD and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows
,”
Meas. Sci. Technol.
,
12
(
9
), p.
1422
. 10.1088/0957-0233/12/9/307
31.
Morgan
,
C.
,
Babinsky
,
H.
, and
Harvey
,
J.
,
2009
, “
Vortex Detection Methods for Use With PIV and CFD Data
,”
Proceedings of 47th AIAA Aerospace Sciences Meeting
,
Orlando, FL
,
Jan. 5–8
, AIAA 2009-74.
You do not currently have access to this content.