Abstract

Turbomachinery blade rows can have non-uniform geometries due to design intent, manufacture errors or wear. When predictions are sought for the effect of such non-uniformities, it is generally the case that whole assembly calculations are needed. A spectral method is used in this paper to approximate the flow fields of the whole assembly but with significantly less computation cost. The method projects the flow perturbations due to the geometry non-uniformity in an assembly in Fourier space, and only one passage is required to compute the flow perturbations corresponding to a certain wave-number of geometry variation. The performance of this method on transonic blade rows is demonstrated on a modern fan assembly. Low engine order and high engine order geometry non-uniformity (e.g., “saw-tooth” pattern) are examined. The non-linear coupling between the flow perturbations and the passage-averaged flow field is also demonstrated. Pressure variations on the blade surface and the potential flow field upstream of the leading edge from the proposed spectral method and the direct whole assembly solutions are compared. Good agreement is observed on both quasi-3D and full 3D cases. A lumped approach to compute deterministic fluxes is also proposed to further reduce the computational cost of the spectral method. The spectral method is formulated in such a way that it can be easily implemented into an existing harmonic flow solver by adding an extra source term and can be potentially used as an efficient tool for aeromechanical and aeroacoustics design of turbomachinery blade rows.

References

1.
Hall
,
K. C.
, and
Crawley
,
E. F.
,
1989
, “
Calculation of Unsteady Flows in Turbomachinery Using the Linearized Euler Equations
,”
AIAA J.
,
27
(
6
), pp.
777
787
.
2.
He
,
L.
, and
Ning
,
W.
,
1998
, “
Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA J.
,
36
(
11
), pp.
2005
2012
.
3.
Adamczyk
,
J. J.
,
1999
, “
Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design
,”
ASME J. Turbomach.
,
122
(
2
), pp.
189
217
.
4.
Wang
,
F.
, and
di Mare
,
L.
,
2019
, “
Favre-Averaged Nonlinear Harmonic Method for Compressible Periodic Flows
,”
AIAA J.
,
57
(
3
), pp.
1133
1142
.
5.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.
6.
McMullen
,
M.
, and
Jameson
,
A.
,
2006
, “
The Computational Efficiency of Non-Linear Frequency Domain Methods
,”
J. Comput. Phys.
,
212
(
2
), pp.
637
661
.
7.
Sicot
,
F.
,
Puigt
,
G.
, and
Montagnac
,
M.
,
2008
, “
Block-Jacobi Implicit Algorithms for the Time Spectral Method
,”
AIAA J.
,
46
(
12
), pp.
3080
3089
.
8.
Hall
,
K. C.
,
Ekici
,
K.
,
Thomas
,
J. P.
, and
Dowell
,
E. H.
,
2013
, “
Harmonic Balance Methods Applied to Computational Fluid Dynamics Problems
,”
Int. J. Comput. Fluid Dyn.
,
27
(
2
), pp.
52
67
.
9.
Vasanthakumar
,
P
,
2003
, “
Three Dimensional Frequency-Domain Solution Method for Unsteady Turbomachinery Flows
,”
Ph.d. thesis
,
Durham University
,
Durham, UK, Jan
.
10.
Vilmin
,
S.
,
Capron
,
A.
, and
Hirsch
,
C.
,
2013
, “
The Nonlinear Harmonic Method: From Single Stage to Multi-row Effects
,”
Int. J. Comput. Fluid Dyn.
,
27
(
2
), pp.
88
99
.
11.
Wang
,
F.
,
di Mare
,
L.
, and
Adami
,
P.
,
2019
, “
Favre-averaged Fourier-Based Methods for Gas Turbine Flows
,”
Volume 2C: Turbomachinery
,
Phoenix, AZ
,
American Society of Mechanical Engineers
.
12.
He
,
L.
,
2010
, “
Fourier Methods for Turbomachinery Applications
,”
Prog. Aerosp. Sci.
,
46
(
8
), pp.
329
341
.
13.
He
,
L.
,
2006
, “
Fourier Modeling of Steady and Unsteady Nonaxisymmetrical Flows
,”
J. Propul. Power.
,
22
(
1
), pp.
197
201
.
14.
Wang
,
F.
, and
di Mare
,
L.
,
2019
, “
Efficient Approach for Simulating Aperiodic Flows Due to Geometry Distortions
,”
AIAA J.
,
58
(
3
), pp.
1
14
.
15.
Wilson
,
M. J.
,
Imregun
,
M.
, and
Sayma
,
A. I.
,
2006
, “
The Effect of Stagger Variability in Gas Turbine Fan Assemblies
,”
ASME J. Turbomach.
,
129
(
2
), pp.
404
411
.
16.
Hoyniak
,
D.
, and
Fleeter
,
S.
,
1986
, “
Forced Response Analysis of An Aerodynamically Detuned Supersonic Turbomachine Rotor
,”
ASME J. Vib. Acoust.
,
108
(
2
), pp.
117
124
.
17.
Hoyniak
,
D.
, and
Fleeter
,
S.
,
1986
, “
Aerodynamic Detuning Analysis of An Unstalled Supersonic Turbofan Cascade
,”
ASME J. Eng. Gas Turbines. Power.
,
108
(
1
), pp.
60
67
.
18.
Hawkings
,
D.
,
1971
, “
Multiple Tone Generation by Transonic Compressors
,”
J. Sound. Vib.
,
17
(
2
), pp.
241
250
.
19.
Stratford
,
B.
, and
Newby
,
D.
,
1977
, “
A New Look At the Generation of Buzz-saw Noise
,”
Fourth Aeroacoustics Conference
,
Atlanta, GA
,
Oct. 3–5
,
American Institute of Aeronautics and Astronautics
.
20.
Han
,
F.
,
Sharma
,
A.
,
Paliath
,
U.
, and
Shieh
,
C.
,
2014
, “
Multiple Pure Tone Noise Prediction
,”
J. Sound. Vib.
,
333
(
25
), pp.
6942
6959
.
21.
Lu
,
Y.
,
Lad
,
B.
,
Vahdati
,
M.
, and
Stapelfeldt
,
S. C.
,
2019
, “
Nonsynchronous Vibration Associated with Transonic Fan Blade Untwist
,”
Volume 7A: Structures and Dynamics
,
Phoenix, AZ
,
American Society of Mechanical Engineers
.
22.
He
,
L.
,
2008
, “
Harmonic Solution of Unsteady Flow Around Blades With Separation
,”
AIAA. J.
,
46
(
6
), pp.
1299
1307
.
23.
Vilmin
,
S.
,
Lorrain
,
E.
,
Hirsch
,
C.
, and
Swoboda
,
M.
,
2006
, “
Unsteady Flow Modeling Across the Rotor/stator Interface Using the Nonlinear Harmonic Method
,”
Volume 6: Turbomachinery, Parts A and B
,
Barcelona, Spain
,
ASMEDC
.
24.
Wang
,
F.
, and
di Mare
,
L.
,
2017
, “
Mesh Generation for Turbomachinery Blade Passages With Three-Dimensional Endwall Features
,”
J. Propul. Power.
,
33
(
6
), pp.
1459
1472
.
25.
F. R. Menter
,
M. K.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the Sst Turbulence Model
,”
Proceedings of the 4th International Symposium on Turbulence Heat and Mass Transfer
,
Antalya, Turkey
,
Begell House Inc.
, pp.
625
632
.
26.
di Mare
,
L.
,
Kulkarni
,
D. Y.
,
Wang
,
F.
,
Romanov
,
A.
,
Ramar
,
P. R.
, and
Zachariadis
,
Z. I.
,
2011
, “
Virtual Gas Turbines: Geometry and Conceptual Description
,”
Proceedings of ASME TurboExpo
,
Vancouver, British Columbia, Canada
,
ASME
.
27.
Wang
,
F.
,
Carnevale
,
M.
,
Lu
,
G.
,
di Mare
,
L.
, and
Kulkarni
,
D.
,
2016
, “
Virtual Gas Turbine: Pre-Processing and Numerical Simulations
,”
Proceedings of ASME TurboExpo
,
Seoul, South Korea
,
ASME
.
28.
Hadade
,
I.
,
Wang
,
F.
,
Carnevale
,
M.
, and
di Mare
,
L.
,
2019
, “
Some Useful Optimisations for Unstructured Computational Fluid Dynamics Codes on Multicore and Manycore Architectures
,”
Comput. Phys. Commun.
,
235
, pp.
305
323
.
29.
Gliebe
,
P.
,
Mani
,
R.
,
Shin
,
H.
,
Mitchell
,
B.
,
Ashford
,
G.
,
Salamah
,
S.
, and
Connel
,
S.
,
2000
,
Aeroacoustic Prediction Codes. Technical Report
. NASA/CR–2000-210244, NASA.
30.
Saad
,
Y.
, and
Schultz
,
M. H.
,
1986
, “
GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems
,”
SIAM J. Sci. Stat. Comput.
,
7
(
3
), pp.
856
869
.
You do not currently have access to this content.