Abstract

Unsteady aerodynamic phenomena appearing close to the stall boundary in axial fans and compressors have been the subject of extensive investigations. A particular phenomenon known as “rotating instabilities” typically occurs in the tip region at highly loaded conditions and is often linked to blade vibrations. During rig and engine testing, it is usually identified by the characteristic shape of its pressure spectra. In the 1990s, this shape has been explained as the result of a circumferentially propagating disturbance, which is unsteady in a frame of reference rotating with the disturbance. In this analysis, conclusions regarding its propagation speed and frequency have been made based on the analysis of spectral peaks, and this method is still often used to classify unsteady aerodynamic phenomena. However, in high subsonic and transonic machines, where aeroacoustic and aeroelastic phenomena interact with aerodynamic disturbances, the interpretation of measurements using spectra alone is challenging. The present article aims to demonstrate the difficulties and subtleties associated with the analysis of measurement signals, which need to be overcome to correctly interpret stall precursor signatures. At the example of a recent investigation on a composite fan, the consequences of sensor placement and postprocessing techniques are discussed with a focus on spectral averaging, isolation of non-synchronous phenomena, and multisensor cross correlation methods. It is seen that the interpretation of phenomena based solely on spectral peaks and their spacing can be misleading and that the characteristic features of a rotating instability spectrum do not require an unstable pulsating disturbance.

References

1.
Mathioudakis
,
K.
, and
Breugelmans
,
F.
,
1985
, “
Development of Small Rotating Stall in a Single Stage Axial Compressor
,”
Turbo Expo: Power for Land, Sea and Air
,
Houston, TX
,
Mar. 18–21
, Vol.
799382
,
American Society of Mechanical Engineers
, p.
V001T03A064
.
2.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2001
, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
,”
ASME J. Turbomach.
,
123
(
3
), pp.
453
460
.
3.
Day
,
I. J.
,
2015
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.
4.
Baumgartner
,
M.
,
Kameier
,
F.
, and
Hourmouziadis
,
J.
,
1995
, “
Non-Engine Order Blade Vibration in a High Pressure Compressor
,”
Twelfth International Symposium on Airbreathing Engines
,
Melbourne, Australia
,
September
.
5.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Tanino
,
T.
, and
Furukawa
,
M.
,
2000
, “
Propagation of Multiple Short-Length-Scale Stall Cells in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
122
(
1
), pp.
45
54
.
6.
Vo
,
H. D.
,
2010
, “
Role of Tip Clearance Flow in Rotating Instabilities and Nonsynchronous Vibrations
,”
J. Propul. Power
,
26
(
3
), pp.
556
561
.
7.
Wang
,
H.
,
Wu
,
Y.
,
Ouyang
,
H.
,
Tian
,
J.
, and
Du
,
Z.
,
2015
, “
Investigations of Rotating Instability and Fluctuating Tip Clearance Flow in a Low-Speed Axial Compressor
,”
Proc. Inst. Mech. Eng., Part G: J. Aeros. Eng.
,
230
(
6
), pp.
981
994
.
8.
März
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating Instability
,”
ASME J. Turbomach.
,
124
(
3
), pp.
367
374
.
9.
Pardowitz
,
B.
,
Tapken
,
U.
,
Sorge
,
R.
,
Thamsen
,
P. U.
, and
Enghardt
,
L.
,
2013
, “
Rotating Instability in an Annular Cascade: Detailed Analysis of the Instationary Flow Phenomena
,”
ASME J. Turbomach.
,
136
(
6
), p.
061017
.
10.
Schrapp
,
H.
,
Stark
,
U.
, and
Saathoff
,
H.
,
2008
, “
Breakdown of the Tip Clearance Vortex in a Rotor Equivalent Cascade and in a Single-Stage Low-Speed Compressor
,”
Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. Volume 6: Turbomachinery, Parts A, B, and C
,
Berlin, Germany
,
June 9–13
, pp.
115
129
.
11.
Eck
,
M.
,
Rückert
,
R.
,
Peitsch
,
D.
, and
Lehmann
,
M.
,
2020
, “
Prestall Instability in Axial Flow Compressors
,”
ASME J. Turbomach.
,
142
(
7
), p.
071009
.
12.
Kameier
,
F.
, and
Neise
,
W.
,
1997
, “
Rotating Blade Flow Instability as a Source of Noise in Axial Turbomachines
,”
J. Sound Vib.
,
203
(
5
), pp.
833
853
.
13.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
SAE International
,
Warrendale, PA
, SAE Technical Paper 620532.
14.
Brandstetter
,
C.
,
Juengst
,
M.
, and
Schiffer
,
H.-P.
,
2018
, “
Measurements of Radial Vortices, Spill Forward, and Vortex Breakdown in a Transonic Compressor
,”
ASME J. Turbomach.
,
140
(
6
), p.
061004
.
15.
Cumpsty
,
N. A.
,
2004
,
Compressor Aerodynamics
,
Longman Scientific & Technical
,
Harlow, UK
, pp.
433
439
.
16.
Clark
,
S. T.
,
2013
, “
Design for Coupled-mode Flutter and Non-Synchronous Vibration in Turbomachinery
,”
Ph.D. thesis
,
Duke University
,
Durham, NC
.
17.
Cumpsty
,
N.
, and
Whitehead
,
D.
,
1971
, “
The Excitation of Acoustic Resonances by Vortex Shedding
,”
J. Sound Vib.
,
18
(
3
), pp.
353
369
.
18.
Kielb
,
R. E.
,
Barter
,
J. W.
,
Thomas
,
J. P.
, and
Hall
,
K. C.
,
2003
, “
Blade Excitation by Aerodynamic Instabilities: A Compressor Blade Study
,”
ASME Turbo Expo 2003
,
Atlanta, GA
,
June 16–19
, pp.
399
406
.
19.
Stapelfeldt
,
S.
, and
Brandstetter
,
C.
,
2020
, “
Non-Synchronous Vibration in Axial Compressors: Lock-In Mechanism and Semi-Analytical Model
,”
J. Sound Vib.
,
488
, p.
115649
.
20.
Camp
,
T. R.
,
1999
, “
A Study of Acoustic Resonance in a Low-Speed Multistage Compressor
,”
ASME J. Turbomach.
,
121
(
1
), pp.
36
43
.
21.
Parker
,
R.
, and
Stoneman
,
S. A. T.
,
1989
, “
The Excitation and Consequences of Acoustic Resonances in Enclosed Fluid Flow Around Solid Bodies
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
,
203
(
1
), pp.
9
19
.
22.
Hellmich
,
B.
, and
Seume
,
J. R.
,
2008
, “
Causes of Acoustic Resonance in a High-Speed Axial Compressor
,”
ASME J. Turbomach.
,
130
(
3
), p.
031003
.
23.
Fiquet
,
A.-L.
,
Brandstetter
,
C.
,
Aubert
,
S.
, and
Philit
,
M.
,
2019
, “
Non-Synchronous Aeroacoustic Interaction in an Axial Multi-Stage Compressor
,”
ASME J. Turbomach.
,
141
(
10
), p.
101013
.
24.
Brandstetter
,
C.
,
Paoletti
,
B.
, and
Ottavy
,
X.
,
2019
, “
Compressible Modal Instability Onset in an Aerodynamically Mistuned Transonic Fan
,”
ASME J. Turbomach.
,
141
(
3
), p.
031004
.
25.
Parker
,
R.
,
1984
, “
Acoustic Resonances and Blade Vibration in Axial Flow Compressors
,”
J. Sound Vib.
,
92
(
4
), pp.
529
539
.
26.
Cooper
,
A. J.
, and
Peake
,
N.
,
2000
, “
Trapped Acoustic Modes in Aeroengine Intakes With Swirling Flow
,”
J. Fluid Mech.
,
419
, pp.
151
175
.
27.
Brandstetter
,
C.
,
Pages
,
V.
,
Duquesne
,
P.
,
Paoletti
,
B.
,
Aubert
,
S.
, and
Ottavy
,
X.
,
2019
, “
Project PHARE-2–A High-Speed UHBR Fan Test Facility for a New Open-Test Case
,”
ASME J. Turbomach.
,
141
(
10
), p.
101004
.
28.
Rodrigues
,
M.
,
Soulat
,
L.
,
Paoletti
,
B.
,
Ottavy
,
X.
, and
Brandstetter
,
C.
,
2021
, “
Aerodynamic Investigation of a Composite Low-Speed Fan for UUBR Application
,”
ASME J. Turbomach.
,
2
(
3
), pp.
1
13
.
You do not currently have access to this content.