Abstract

This study experimentally investigated the net benefit of film cooling with six rows of impingement–effusion structures on the suction surface of a vane. The experiment obtained the film cooling effectiveness of a double-walled system on the suction surface via the pressure-sensitive paint (PSP) technique. The film cooling effectiveness obtained by the PSP technique is coupled with the transient liquid crystal (TLC) technique to determine the heat transfer coefficient. This combination of techniques reduces the time required for the experiment and improves efficiency of the experiment. Through the experimentally measured film cooling effectiveness and dimensionless heat transfer coefficient, the net heat flux reduction (NHFR) is calculated to comprehensively measure the net benefit of film cooling. At the same time, in view of the lower net benefit of film cooling of the film holes in the front of the suction surface under a higher mass flux ratio (MFR), the study improved the cylindrical holes into fan-shaped holes and proposed two improvement schemes: Vane A and Vane B. The experiment was carried out under three MFRs (0.4%, 0.8%, 1.6%), and compared the film cooling effectiveness, heat transfer coefficient ratio, and net heat flux reduction of Vane A and Vane B with the baseline vane under each mass flux ratio. The findings show that using the coupling of PSP and TLC to determine the heat transfer coefficient can yield credible results. The improvement of the fan-shaped holes makes the film cooling effectiveness and heat transfer coefficient ratio improved compared with the baseline vane. Changing cylindrical holes to fan-shaped holes does not necessarily lead to a better net benefit of film cooling. The fan-shaped holes should be arranged reasonably to obtain the better net benefit of film cooling.

References

1.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2012
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
2.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
Proceeding of ASME TURBO EXPO 2017
, ASME Paper No. GT2017-63205.
3.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Ganic
,
E. N.
,
1985
,
Handbook of Heat Transfer Applications
, 2nd ed.,
McGraw-Hill
,
New York
.
4.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.
5.
Yu
,
Y.
,
Yen
,
C. H.
,
Shih
,
T. I. P.
,
Chyu
,
M. K.
, and
Gogineni
,
S.
,
2002
, “
Film Cooling Effectiveness and Heat Transfer Coefficient Distributions Around Diffusion Shaped Holes
,”
ASME J. Heat Transfer
,
124
(
5
), pp.
820
827
.
6.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
, and
Rawlinson
,
A. J.
,
2001
, “
The Variation of Heat Transfer Coefficient, Adiabatic Effectiveness and Aerodynamic Loss With Film Cooling Hole Shape
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
361
368
.
7.
Han
,
J. C.
, and
Teng
,
S.
,
2000
, “
Effect of Film-Hole Shape on Turbine Blade Film Cooling Performance
,”
J. Thermophys. Heat Transfer
,
15
(
3
), pp.
257
265
.
8.
Haydt
,
S.
, and
Lynch
,
S.
,
2021
, “
Heat Transfer Coefficient Augmentation for a Shaped Film Cooling Hole at a Range of Compound Angles
,”
ASME J. Turbomach.
,
143
(
5
), p.
051012
.
9.
Bons
,
J. P.
,
Macarthur
,
C. D.
, and
Rivir
,
R. B.
,
1996
, “
The Effect of High Freestream Turbulence on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
814
825
.
10.
Hayes
,
S. A.
,
Nix
,
A. C.
,
Nestor
,
C. M.
,
Billups
,
D. T.
, and
Haught
,
S. M.
,
2017
, “
Experimental Investigation of the Influence of Freestream Turbulence on an Anti-Vortex Film Cooling Hole
,”
Exp. Therm. Fluid. Sci.
,
81
(
2
), pp.
314
326
.
11.
Liu
,
C.
,
Zhu
,
H.
,
Zhang
,
X.
,
Xu
,
D.
, and
Zhang
,
Z.
,
2014
, “
Experimental Investigation on the Leading Edge Film Cooling of Cylindrical and Laid-Back Holes With Different Radial Angles
,”
Int. J. Heat Mass Transfer
,
71
, pp.
615
625
.
12.
Harrington
,
M. K.
,
Mcwaters
,
M. A.
,
Bogard
,
D. G.
,
Lemmon
,
C. A.
, and
Thole
,
K. A.
,
2001
, “
Full-Coverage Film Cooling With Short Normal Injection Holes
,”
ASME J. Turbomach.
,
123
(
4
), pp.
798
805
.
13.
Xue
,
S.
,
Ng
,
W.
,
Ekkad
,
S.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2012
, “
The Performance of Fan-Shaped Hole Film Cooling on a Gas Turbine Blade at Transonic Condition With High Freestream Turbulence
,”
50th AIAA Aerospace Sciences Meeting
, AIAA Paper No. 2012-0368.
14.
Narzary
,
D. P.
,
Liu
,
K. C.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2012
, “
Influence of Coolant Density on Turbine Blade Film Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
134
(
3
), p.
031006
.
15.
Abdullah
,
K.
, and
Funazaki
,
K. I.
,
2013
, “
Experimental Investigations on Aero-Thermal Interaction of Film Cooling Air Ejected From Multiple Shallow Angle Cooling Holes: Effect of Freestream Turbulence
,”
Proceeding of ASME TURBO EXPO 2013
, ASME Paper GT2013-95346.
16.
Mehendale
,
A. B.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1994
, “
Mainstream Turbulence Effect on Film Effectiveness and Heat Transfer Coefficient of a Gas Turbine Blade With Air and CO2 Film Injection
,”
Int. J. Heat Mass Transfer
,
37
(
17
), pp.
2707
2714
.
17.
Ngetich
,
G. C.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2019
, “
Study of Film Cooling Effectiveness on a Double-Walled Effusion-Cooled Turbine Blade in a High-Speed Flow Using Pressure Sensitive Paint
,”
Proceeding of ASME TURBO EXPO 2019
, ASME Paper No. GT2019-90545.
18.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
B. R.
,
2004
, “
A Transient Infrared Thermography Method for Simultaneous Film Cooling Effectiveness and Heat Transfer Coefficient Measurements From a Single Test
,”
Proceeding of ASME TURBO EXPO 2004
, ASME Paper No. GT2004-54236.
19.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), p.
013001
.
20.
Drost
,
U.
,
Bölcs
,
A.
, and
Hoffs
,
A.
,
1997
, “
Utilization of the Transient Liquid Crystal Technique for Film Cooling Effectiveness and Heat Transfer Investigations on a Flat Plate and a Turbine Airfoil
,”
Proceeding of ASME TURBO EXPO 1997
, ASME Paper No. GT 97-GT-026.
21.
Ye
,
L.
,
Liu
,
C.
,
Liu
,
H.
,
Zhu
,
H.
, and
Luo
,
J.
,
2018
, “
Experimental and Numerical Study on the Effects of Rib Orientation Angle on Film Cooling Performance of Compound Angle Hole
,”
Int. J. Heat Mass Transfer
,
126
(
12
), pp.
1099
1112
.
22.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J. C.
,
2005
, “
Assessment of Steady State PSP, TSP, and IR Measurement Techniques for Flat Plate Film Cooling
,”
ASME Summer Heat Transfer Conference Collocated with the ASME Pacific Rim Technical Conference & Exhibition on Integration & Packaging of Mems. 2005
, ASME Paper No. HT2005-72363.
23.
Crafton
,
J.
,
Lachendro
,
N.
,
Guille
,
M.
,
Sullivan
,
J. P.
, and
Jordan
,
J. D.
,
1999
, “
Application of Temperature and Pressure Sensitive Paint to an Obliquely Impinging Jet
,”
37th Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. AIAA-99-0387.
24.
Camci
,
C.
,
Kim
,
K.
, and
Hippensteele
,
S. A.
,
1991
, “
A New Hue Capturing Technique for the Quantitative Interpretation of Liquid Crystal Images Used in Convective Heat Transfer Studies
,”
Proceeding of ASME TURBO EXPO 1991
, ASME Paper No. GT 91-GT-122.
25.
Wang
,
Z.
,
Ireland
,
P. T.
, and
Jones
,
T. V.
,
1994
, “
A Colour Image Processing System for Transient Liquid Crystal Heat Transfer Experiments
,”
Proceeding of ASME TURBO EXPO 1994
, ASME Paper No. GT 94-GT-290.
26.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
J. Mech. Eng.
,
75
(
1
), pp.
3
8
.
27.
Liu
,
C.
,
Zhu
,
H.
,
Bai
,
J.
, and
Xu
,
D.
,
2011
, “
Film Cooling Performance of Converging-Slot Holes With Different Exit-Entry Area Ratios
,”
ASME J. Turbomach.
,
133
(
1
), p.
011020
.
28.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
(
4
), pp.
800
806
.
29.
Liu
,
C.
,
Zhu
,
H.
,
Bai
,
J.
, and
Xu
,
D.
,
2009
, “
Film Cooling Performance of Converging-Slot Holes With Different Exit-Entry Area Ratios
,”
Proceeding of ASME TURBO EXPO 2009 Volume 3: Heat Transfer, Parts A and B
, ASME Paper No. GT 2009-59002.
You do not currently have access to this content.