Abstract

In gas turbine, multi-stage row blading and technological effects can exhibit significant differences for the flow compared with isolated smooth blade rows. Upstream stages promote a non-uniform flow field at the inlet of the downstream rows that may have large effects on mixing or boundary layer transition processes. The rows of current turbines (and compressors) are already very closely spaced. Axial gaps between adjacent rows of approximately 1/4 to 1/2 of the axial blade chord are common practice. Future designs with higher loading and lower aspect ratios, i.e., fewer and bigger blades, and the ever present aim at minimizing engine length or compactness, will aggravate this condition even further. Interaction between cascade rows will therefore keep increasing and need to be taken into account in loss generation estimation. Also the cavities at hub platform induce purge flow blowing into main annulus and additional losses for the turbine. A robust method to account for the loss generated due to these different phenomena needs to be used. The notion of exergy (energy in the purpose to generate work) provides a general framework to deal with the different transfers of energy between the flow and the gas turbine. This study investigates the flow in a two-stage configuration representative of a low-pressure turbine including hub cavities based on large eddy simulation (LES). A description of the flow in the cavities, the main annulus, and at rim seal interface is proposed. The assessment of loss generated in the configuration is proposed based on an exergy analysis. The study of losses restricted to boundary layer contributions and secondary flows show the interaction processes of secondary vortices and wake generated in upstream rows on the flow in downstream rows.

References

1.
Du
,
P.
, and
Ning
,
F.
,
2016
, “
Validation of a Novel Mixing-Plane Method for Multistage Turbomachinery Steady Flow Analysis
,”
Chin. J. Aeronaut.
,
29
(
6
), pp.
1563
1574
. 10.1016/j.cja.2016.10.005
2.
Saxer
,
A. P.
, and
Giles
,
M. B.
,
1993
, “
Quasi-Three-Dimensional Nonreflecting Boundary Conditions for Euler Equations Calculations
,”
J. Propul. Power
,
9
(
2
), pp.
263
271
. 10.2514/3.23618
3.
O’Mahoney
,
T. D.
,
Hills
,
N. J.
,
Chew
,
J. W.
, and
Scanlon
,
T.
,
2010
, “
Large-Eddy Simulation of Rim Seal Ingestion
,”
roceedings of the ASME Turbo Expo 2010: Power for Land, Sea and Air. Volume 4: Heat Transfer, Parts A and B
,
Glasgow, UK
,
June 14–18
, pp.
1155
1165
.
4.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
,
Bertini
,
F.
, and
Michelassi
,
V.
,
2017
, “
Accurate Estimation of Profile Losses and Analysis of Loss Generation Mechanisms in a Turbine Cascade
,”
ASME J. Turbomach.
,
139
(
12
), p.
121007
. 10.1115/1.4037858
5.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2014
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.
6.
Ramakrishnan
,
K.
,
Richards
,
S. K.
,
Moyroud
,
F.
, and
Michelassi
,
V.
,
2012
, “
Multi-Blade Row Interactions in a Low Pressure Ratio Centrifugal Compressor Stage With a Vaned Diffuser
,”
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
,
Vancouver, British Columbia, Canada
,
June 6–10, 2011
, pp.
1321
1329
.
7.
Steurer
,
A.
,
Benton
,
S. I.
, and
Bons
,
J. P.
,
2014
, “
Effect of Endwall Boundary Layer Thickness on Losses in a LPT Cascade With Unsteady Wakes
,”
ASME Turbo Expo 2014: Turbomachinery Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
, GT2014-26921, p. V02DT44A037.
8.
Pullan
,
G.
,
2004
, “
Secondary Flows and Loss Caused by Blade Row Interaction in a Turbine Stage
,”
Volume 5: Turbo Expo 2004, Parts A and B
,
Anaheim, CA
,
June 14–17
, pp.
1247
1257
.
9.
Cui
,
J.
, and
Tucker
,
P.
,
2016
, “
Numerical Study of Purge and Secondary Flows in a Low-Pressure Turbine
,”
ASME J. Turbomach.
,
139
(
2
), p.
021007
.
10.
Sagaut
,
P.
,
2006
,
Large Eddy Simulation for Incompressible Flows: An Introduction
,
Springer Science & Business Media
,
Berlin, Germany
.
11.
Schrewe
,
S.
,
2015
, “
Experimental Investigation of the Interaction Between Purge and Main Annulus Flow Upstream of a Guide Vane in a Low Pressure Turbine
,”
Ph.D. thesis
,
Technische Universität
,
München, Germany
.
12.
Poinsot
,
T. J.
, and
Lelef
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
. 10.1016/0021-9991(92)90046-2
13.
Schoenfeld
,
T.
, and
Rudgyard
,
M.
,
2012
, “
Steady and Unsteady Flow Simulations Using the Hybrid Flow Solver AVBP
,”
AIAA J.
,
37
(
11
), pp.
1378
1385
.
14.
Lax
,
P. D.
,
1957
, “
Hyperbolic Systems of Conservation Laws II
,”
Commun. Pure Appl. Math.
,
10
(
4
), pp.
537
566
. 10.1002/cpa.3160100406
15.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
. 10.1023/A:1009995426001
16.
Wang
,
G.
,
Duchaine
,
F.
,
Papadogiannis
,
D.
,
Duran
,
I.
,
Moreau
,
S.
, and
Gicquel
,
L.
,
2014
, “
An Overset Grid Method for Large Eddy Simulation of Turbomachinery Stages
,”
J. Comput. Phys.
,
274
, pp.
333
355
. 10.1016/j.jcp.2014.06.006
17.
Pogorelov
,
A.
,
Meinke
,
M.
, and
Schroder
,
W.
,
2018
, “
Large-Eddy Simulation of the Unsteady Full 3D Rim Seal Flow in a One-Stage Axial-Flow Turbine
,”
Flow Turbul. Combust.
,
102
(
1
), pp.
189
220
.
18.
Bridel-bertomeu
,
T.
,
2016
, “
Investigation of Unsteady Phenomena in Rotor/Stator Cavities Using Large Eddy Simulation
,”
Ph.D. thesis
,
INP
,
Grenoble, France
.
19.
Tang
,
E.
,
2016
, “
Modélisation et analyse de l’interaction turbine HP-Anneau de roue
,”
Ph.D. thesis
,
Ecole Centrale de Lyon
,
Lyon, France
.
20.
Daviller
,
G.
,
Brebion
,
M.
,
Xavier
,
P.
,
Staffelbach
,
G.
,
Müller
,
J. D.
, and
Poinsot
,
T.
,
2017
, “
A Mesh Adaptation Strategy to Predict Pressure Losses in LES of Swirled Flows
,”
Flow Turbul. Combust.
,
99
(
1
), pp.
93
118
. 10.1007/s10494-017-9808-z
21.
Dapogny
,
C.
,
Dobrzynski
,
C.
, and
Frey
,
P.
,
2014
, “
Three-Dimensional Adaptive Domain Remeshing, Implicit Domain Meshing, and Applications to Free and Moving Boundary Problems
,”
J. Comput. Phys.
,
262
(
1
), pp.
358
378
. 10.1016/j.jcp.2014.01.005
22.
Gourdain
,
N.
,
Sicot
,
F.
,
Duchaine
,
F.
, and
Gicquel
,
L.
,
2014
, “
Large Eddy Simulation of Flows in Industrial Compressors: A Path From 2015 to 2035
,”
Phil. Trans. R. Soc. A
,
372
(
2022
), p.
20130323
. 10.1098/rsta.2013.0323
23.
Piomelli
,
U.
,
2008
, “
Wall-Layer Models for Large-Eddy Simulations
,”
Prog. Aerosp. Sci.
,
44
(
6
), pp.
437
446
. 10.1016/j.paerosci.2008.06.001
24.
Pichler
,
R.
,
Zhao
,
Y.
,
Sandberg
,
R. D.
,
Michelassi
,
V.
,
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2018
, “
LES and RANS Analysis of the End-Wall Flow in a Linear LPT Cascade With Variable Inlet Conditions, Part I: Flow and Secondary Vorticity Fields
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
, GT2018-76233, p. V02BT41A020.
25.
Batchelor
,
G. K.
,
1951
, “
Note on a Class of Solutions of the Navier-Stokes Equations Representing Steady Rotationally-Symmetric Flow
,”
Q. J. Mech. Appl. Math.
,
4
(
1
), pp.
29
41
. 10.1093/qjmam/4.1.29
26.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
,
82
(
1
), p.
217
. 10.1115/1.3662532
27.
Denton
,
J. D.
, and
Pullan
,
G.
,
2012
, “
A Numerical Investigation Into the Sources of Endwall Loss in Axial Flow Turbines
,”
Volume 8: Turbomachinery, Parts A, B, and C
,
Copenhagen, Denmark
,
June 11–15
, p.
1417
.
28.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
,
1980
, “
Natural Transition of Boundary Layers–The Effects of Turbulence, Pressure Gradient, and Flow History
,”
J. Mech. Eng. Sci.
,
22
(
5
), pp.
213
228
. 10.1243/JMES_JOUR_1980_022_043_02
29.
Johnson
,
B.
,
Mack
,
G. J.
,
Paolillo
,
R. E.
, and
Daniels
,
W. A.
,
1994
, “
Turbine Rim Seal Gas Path Flow Ingestion Mechanisms
,”
30th Joint Propulsion Conference and Exhibit
,
June 27–29
,
Indianapolis, IN
, pp.
358
378
.
30.
Zlatinov
,
M. B.
,
Sooi Tan
,
C.
,
Montgomery
,
M.
,
Islam
,
T.
, and
Harris
,
M.
,
2012
, “
Turbine Hub and Shroud Sealing Flow Loss Mechanisms
,”
ASME J. Turbomach.
,
134
(
6
), p.
061027
. 10.1115/1.4006294
31.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
,
2007
,
Internal Flow: Concepts and Applications
, Vol.
3
,
Cambridge University Press
,
Cambridge
.
32.
Horlock
,
J. H.
, and
Bathie
,
W. W.
,
2004
, “
Advanced Gas Turbine Cycles
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), p.
924
. 10.1115/1.1789994
33.
Dunbar
,
W. R.
,
Lior
,
N.
, and
Gaggioli
,
R. A.
,
2008
, “
The Component Equations of Energy and Exergy
,”
ASME J. Energy Res. Technol.
,
114
(
1
), pp.
75
83
.
You do not currently have access to this content.