Abstract

Experimental and numerical investigations were performed to study the effects of high blowing ratios and high freestream turbulence on sweeping jet film cooling. Experiments were conducted on a nozzle guide vane suction surface in a low-speed linear cascade at a range of blowing ratios of 0.5–3.5 and freestream turbulence of 0.6% and 14.3%. Infrared thermography was used to estimate the adiabatic cooling effectiveness. Thermal field and boundary layer measurements were conducted at a cross-plane at x/D = 12 downstream of the hole exit. Results were compared with a baseline 777-shaped hole and showed that the sweeping jet hole has improved cooling effectiveness at high blowing ratios (M > 1). The thermal field data revealed that the coolant separates from the surface at high blowing ratios for the 777-shaped hole while the coolant remains attached for the sweeping jet hole. Boundary layer measurements further confirmed that due to the sweeping motion of the jet, the effective jet momentum of the sweeping jet hole remains much lower than that of a 777-shaped hole. Thus, the coolant remains closer to the wall even at high blowing ratios. Large Eddy simulations (LES) were performed for both the sweeping jet and 777-shaped hole to evaluate the interaction between the coolant jet and the freestream in the near hole regions. Results showed that 777-shaped hole has a strong jetting at high blowing ratio that originates inside the hole breakout edges thus causing the jet to blow-off from the surface. In contrast, the sweeping jet does not show this behavior due to its internal geometry and flapping motion of the jet.

References

References
1.
Bunker
,
R. S.
,
2010
, “
Film Cooling: Breaking the Limits of Diffusion Shaped Holes
,”
J. Heat Trans. Res.
,
41
(
6
), pp.
627
650
. 10.1615/HeatTransRes.v41.i6.40
2.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometric Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061008
. 10.1115/1.4006290
3.
Eberly
,
M. K.
, and
Thole
,
K. A.
,
2013
, “
Time-Resolved Film-Cooling Flows at High and Low Density Ratios
,”
ASME J. Turbomach.
,
136
(
6
), p.
061003
. 10.1115/1.4025574
4.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1990
, “
Effects of Density Ratio on the Hydrodynamics of Film Cooling
,”
ASME J. Turbomach.
,
112
(
3
), pp.
437
443
. 10.1115/1.2927678
5.
Bons
,
J. P.
,
MacArthur
,
C. D.
, and
Rivir
,
R. B.
,
1996
, “
The Effect of High FreeStream Turbulence on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
814
825
. 10.1115/1.2840939
6.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
A.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
. 10.1115/1.1515336
7.
Ames
,
F. E.
,
1997
, “
The Influence of Large Scale High Intensity Turbulence on Vane Heat Transfer
,”
ASME J. Turbomach.
,
119
(
1
), pp.
23
30
. 10.1115/1.2841007
8.
Heneka
,
C.
,
Schulz
,
A.
,
Bauer
,
H.
,
Heselhaus
,
A.
, and
Crawford
,
M. E.
,
2012
, “
Film Cooling Performance of Sharp Edged Diffuser Holes With Lateral Inclination
,”
ASME J. Turbomach.
,
134
(
4
), p.
041015
.
9.
Liu
,
J. S.
,
Malak
,
M. F.
,
Tapia
,
L. A.
,
Crites
,
D. C.
,
Ramachandran
,
D.
,
Srinivasan
,
B.
,
Muthiah
,
G.
, and
Venkataramanan
,
J.
,
2010
, “
Enhanced Film Cooling Effectiveness With New Shaped Holes
,” ASME Paper No. GT2010-22774.
10.
Lu
,
Y.
,
Faucheaux
,
D.
, and
Ekkad
,
S. V.
,
2005
, “
Film Cooling Measurements for Novel Hole Configurations
,” ASME Paper No. HT2005-72396.
11.
Heidmann
,
J. D.
, and
Ekkad
,
S. V.
,
2008
, “
A Novel Antivortex Turbine Film-Cooling Hole Concept
,”
ASME J. Turbomach.
,
130
(
3
), p.
031020
. 10.1115/1.2
12.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME Turbo Expo
, GT2014-25992.
13.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2016
, “
Thermal Field Measurements for a Shaped Hole at Low and High Freestream Turbulence Intensity
,”
ASME J. Turbomach.
,
139
(
2
), p.
021012
. 10.1115/1.4034798
14.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2016
, “
Effect of High Freestream Turbulence on Flowfields of Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091001
. 10.1115/1.4032736
15.
Haydt
,
S.
,
Lynch
,
S.
, and
Lewis
,
S.
,
2017
, “
The Effect of a Meter-Diffuser Offset on Shaped Film Cooling Hole Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
139
(
9
), p.
091012
. 10.1115/1.4036199
16.
Haydt
,
S.
, and
Lynch
,
S.
,
2018
, “
Cooling Effectiveness for a Shaped Film Cooling Hole at a Range of Compound Angles
,”
ASME. Turbo Expo: Power for Land, Sea, and Air, Volume 5C: Heat Transfer.
V05CT19A011
. 10.1115/GT2018-75726
17.
Haydt
,
S.
,
Lynch
,
S.
, and
Lewis
,
S.
,
2018
, “
The Effect of Area Ratio Change Via Increased Hole Length for Shaped Film Cooling Holes With Constant Expansion Angles
,”
ASME J. Turbomach.
,
140
(
5
), p.
051002
. 10.1115/1.4038871
18.
Boyd
,
E. J.
,
McClintic
,
J. W.
,
Chavez
,
K. F.
, and
Bogard
,
D. G.
,
2016
, “
Direct Measurement of Heat Transfer Coefficient Augmentation at Multiple Density Ratios
,”
ASME J. Turbomach.
,
139
(
1
), p.
011005
. 10.1115/1.4034190
19.
Ostermann
,
F.
,
Woszidlo
,
R.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2016
, “
The Time-Resolved Flow Field of a Jet Emitted by a Fluidic Oscillator Into a Crossflow
,”
54th AIAA Aerospace Sciences Meeting and Exhibit
,
Jan 2016
.
AIAA 2015-0345
.
20.
Sieber
,
M.
,
Ostermann
,
F.
,
Woszidlo
,
R.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2016
, “
Lagrangian Coherent Structure in the Flow Field of a Fluidic Oscillator
,”
Phys. Rev. Fluids
,
1
(
5
), p.
050509
. 10.1103/PhysRevFluids.1.050509
21.
Thurman
,
D.
,
Poinsatte
,
P.
,
Ameri
,
A.
,
Culley
,
D.
,
Raghu
,
S.
, and
Shyam
,
V.
,
2016
, “
Investigation of Spiral and Sweeping Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091007
. 10.1115/1.4032839
22.
Hossain
,
M. A.
,
Prenter
,
R.
,
Lundgreen
,
R. K.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2017
, “
Experimental and Numerical Investigation of Sweeping Jet Film Cooling
,”
ASME J. Turbomach.
,
140
(
3
), p.
031009
. 10.1115/1.4038690
23.
Hossain
,
M. A.
,
Agricola
,
L.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2018
, “
Sweeping Jet Film Cooling on a Turbine Vane
,”
ASME J. Turbomach.
,
141
(
3
), p.
031007
. 10.1115/1.4042070
24.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1989
,
Experimentation and Uncertainty Analysis for Engineers
,
John Wiley & Sons
,
New York
, Ch. 3
25.
Mathey
,
F.
,
Cokljat
,
D.
,
Bertoglio
,
J. P.
, and
Sergent
,
E.
,
2006
, “
Assessment of the Vortex Method for Large Eddy Simulation Inlet Conditions
,”
Prog. Comput. Fluid Dyn.
,
6
(
1–3
), pp.
58
67
. 10.1504/PCFD.2006.009483
26.
Li
,
W.
,
Shi
,
W.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2017
, “
On the Flow Structures and Adiabatic Film Effectiveness for Simple and Compound Angle Hole With Varied Length-to-Diameter Ratio by Large Eddy Simulation and Pressure-Sensitive Paint Techniques
,”
ASME J. Heat Transfer
,
139
(
12
), p.
122201
. 10.1115/1.4037085
27.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “Subgrid-scale Stress Modelling Based on the Square of the Velocity Gradient Tensor,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.
Springer Verlag (Germany).
28.
Ansys Inc.
,
2015
,
ANSYS Fluent Theory Guide
,
ANSYS, Inc.
,
Canonsburg, PA
. 10.1016/0140-3664 (87)90311-2
29.
Ayhan
,
H.
, and
Sökmen
,
C. N.
,
2012
, “
CFD Modeling of Thermal Mixing in a T-Junction Geometry Using LES Model
,”
Nucl. Eng. Des.
,
253
(
2012
), pp.
183
191
. 10.1016/j.nucengdes.2012.08.010
30.
Kohli
,
A.
, and
Thole
,
K. A.
,
1998
, “
Entrance Effects on Diffused Film-Cooling Holes
,” ASME Paper No. 98-GT-402.
31.
Fawcett
,
R. J.
,
Wheeler
,
A. P. S.
,
He
,
L.
, and
Taylor
,
R.
,
2012
, “
Experimental Investigation Into Unsteady Effects on Film Cooling
,”
ASME J. Turbomach.
,
134
(
2
), p.
021015
. 10.1115/1.4003053
You do not currently have access to this content.