Thermal closure of the engine casing is widely used to minimize undesirable blade tip leakage flows thus improving jet engine performance. This may be achieved using an impingement cooling scheme on the external casing wall, provided by manifolds attached to the outside of the engine. The assembly tolerance of these components leads to variation in the standoff distance between the manifold and the casing, and its effects on casing contraction must be understood to allow build tolerance to be specified. For cooling arrangements with promising performance, the variation in closure with standoff distance of z/d = 1–6 were investigated through a mixture of extensive numerical modeling and experimental validation. A cooling manifold, typical of that adopted by several engine companies, incorporating three different arrays of short cooling holes (chosen from previous study by Choi et al. (2016, “The Relative Performance of External Casing Impingement Cooling Arrangements for Thermal Control of Blade Tip Clearance,” ASME J. Turbomach., 138(3), p. 031005.)) and thermal control dummy flanges were considered. Typical contractions of 0.5–2.2 mm are achieved from the 0.02–0.35 kg/s of the current casing cooling flows. The variation in heat transfer coefficient observed with standoff distance is much lower for the sparse array investigated compared to previous designs employing arrays typical of blade cooling configurations. The reason for this is explained through interrogation of the local flow field and resultant heat transfer coefficient. This implies that acceptable control of the circumferential uniformity of case cooling can be achieved with relatively large assembly tolerance of the manifold relative to the casing.

References

1.
Haselbach
,
F.
,
Newby
,
A.
, and
Parker
,
R.
,
2015
, “Next Generation of Large Civil Aircraft Engines—Concepts & Technologies,” European Conference on Turbomachinery Fluid dynamics and Thermodynamics (ETC), Madrid, Spain, Mar. 23–27, Paper No.
ETC2015-IL5
.
2.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
3.
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2004
, “
Turbine Engine Clearance Control Systems: Current Practices and Future Directions
,”
AIAA J. Propul. Power
,
20
(
2
), pp.
302
311
.
4.
Lewis
,
L. V.
, and
Bacic
,
M.
,
2011
, “
Rotor Blade Tip Clearance Control
,” Rolls-Royce Plc, Westhampnett, UK, U.S. Patent No.
US8721257 B2
.
5.
Knipser
,
C.
,
Horn
,
W.
, and
Staudacher
,
S.
,
2009
, “Aircraft Engine Performance Improvement by Active Clearance Control in Low Pressure Turbines,”
ASME
Paper No. GT2009-59301.
6.
Andreini
,
A.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Coutandin
,
D.
,
2013
, “
Experimental and Numerical Analysis of Multiple Impingement Jet Arrays for an Active Clearance Control System
,”
ASME J. Turbomach.
,
135
(
3
), p.
031016
.
7.
Da Soghe
,
R.
, and
Andreini
,
A.
,
2013
, “
Numerical Characterization of Pressure Drop Across the Manifold of Turbine Casing Cooling System
,”
ASME J. Turbomach.
,
135
(
3
), p.
031017
.
8.
Ahmed
,
F.
,
Tucholke
,
R.
,
Weigand
,
B.
, and
Meier
,
K.
,
2011
, “Numerical Investigation of Heat Transfer and Pressure Drop Characteristics for Different Hole Geometries of a Turbine Casing Impingement Cooling System,”
ASME
Paper No. GT2011-45251.
9.
Ahmed
,
F.
,
Weigand
,
B.
, and
Meier
,
K.
,
2010
, “Heat Transfer and Pressure Drop Characteristics for a Turbine Casing Impingement Cooling System,”
ASME
Paper No. IHTC14-22817.
10.
Dann
,
A. G.
,
Thorpe
,
S. J.
,
Lewis
,
L. V.
, and
Ireland
,
P. T.
,
2014
, “Innovative Measurement Techniques for a Cooled Turbine Case Operating at Engine Representative Thermal Conditions,”
ASME
Paper No. GT2014-26092.
11.
Ireland
,
P. T.
, and
Jones
,
T. V.
,
2000
, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
969
986
.
12.
Gillespie
,
D. R. H.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Kohler
,
S. T.
,
1998
, “
Full Surface Local Heat Transfer Coefficient Measurements in a Model of an Integrally Cast Impingement Cooling Geometry
,”
ASME J. Turbomach.
,
120
(
1
), pp.
92
99
.
13.
Ling
,
J. P.
,
Ireland
,
P. T.
, and
Turner
,
L.
,
2004
, “
A Technique for Processing Transient Heat Transfer, Liquid Crystal Experiments in the Presence of Lateral Conduction
,”
ASME J. Turbomach.
,
126
(
2
), pp.
247
258
.
14.
Saroi
,
R.
,
2014
, “
Turbine Casing Cooling
,” Rolls-Royce Plc, Westhampnett, UK, U.S. Patent No.
US8668438 B2
.
15.
Choi
,
M.
,
Dyrda
,
D. M.
,
Gillespie
,
D. R. H.
,
Tapanlis
,
O.
, and
Lewis
,
L. V.
,
2016
, “
The Relative Performance of External Casing Impingement Cooling Arrangements for Thermal Control of Blade Tip Clearance
,”
ASME J. Turbomach.
,
138
(
3
), p.
031005
.
16.
Bunker
,
R. S.
, and
Metzger
,
D. E.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions—Part 1: Impingement Cooling Without Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
451
458
.
17.
Chambers
,
A. C.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2003
, “
A Novel Transient Liquid Crystal Technique to Determine Heat Transfer Coefficient Distributions and Adiabatic Wall Temperature in a Three-Temperature Problem
,”
ASME J. Turbomach.
,
125
(
3
), pp.
538
546
.
18.
Shultz
,
D. L.
, and
Jones
,
T. V.
,
1973
, “Heat-Transfer Measurements in Short-Duration Hypersonic Test Facilities,” NATO Advisory Group for Aerospace Research and Development AG-165, Paris, France, AGARD Report No.
AD0758590
.
19.
McGilvray
,
M.
, and
Gillespie
,
D. R. H.
,
2011
, “THTAC: Transient Heat Transfer Analysis Code,” Department of Engineering Science, University of Oxford, Oxford, UK, Technical Report No. OUEL2011-05.
20.
Ryley
,
J. C.
,
McGilvray
,
M.
, and
Gillespie
,
D. R. H.
,
2014
, “Calculation of Heat Transfer Coefficient Distribution on 3D Geometries from Transient Liquid Crystal Experiments,”
ASME
Paper No. GT2014-26973.
21.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
(
2
), pp.
250
258
.
22.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
.
23.
Van Treuren
,
K. W.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Kohler
,
S. T.
,
1996
, “Comparison and Prediction of Local and Average Heat Transfer Coefficients Under an Array of Inline and Staggered Impinging Jets,”
ASME
Paper No. 96-GT-163.
24.
Bailey
,
J. C.
, and
Bunker
,
R. S.
,
2002
, “Local Heat Transfer and Flow Distributions for Impinging Jet Arrays of Dense and Sparse Extent,”
ASME
Paper No. GT2002-30473.
25.
Brevet
,
P.
,
Dejeu
,
C.
,
Dorignac
,
E.
,
Jolly
,
M.
, and
Vullierme
,
J. J.
,
2002
, “
Heat Transfer to a Row of Impinging Jets in Consideration of Optimization
,”
Int. J. Heat Mass Transfer
,
45
(
20
), pp.
4191
4200
.
26.
Xing
,
Y.
, and
Weigand
,
B.
,
2013
, “
Optimum Jet-to-Plate Spacing of Inline Impingement Heat Transfer for Different Crossflow Schemes
,”
ASME J. Heat Transfer
,
135
(
7
), p.
072201
.
27.
Wiseman
,
M. W.
, and
Guo
,
T.
,
2001
, “
An Investigation of Life Extending Control Techniques for Gas Turbine Engines
,”
American Control Conference
(
ACC
), Arlington, VA, June 25–27, pp.
3706
3707
.
You do not currently have access to this content.