In order to predict oscillating loads on a structure, time-linearized methods are fast enough to be routinely used in design and optimization steps of a turbomachine stage. In this work, frequency-domain time-linearized Navier–Stokes computations are proposed to predict the unsteady separated flow generated by an oscillating bump in a transonic nozzle. The influence of regressive pressure waves on the aeroelastic stability is investigated. This case is representative of flutter of a compressor blade submitted to downstream stator potential effects. The influence of frequency is first investigated on a generic oscillating bump to identify the most unstable configuration. Introducing backward traveling pressure waves, it is then showed that aeroelastic stability of the system depends on the phase shift between the wave's source and the bump motion. Finally, feasibility of active control through backward traveling pressure waves is evaluated. The results show a high stabilizing effect even for low amplitude, opening new perspectives for the active control of choke flutter.
Skip Nav Destination
Article navigation
February 2018
Research-Article
Influence of Acoustic Blockage on Flutter Instability in a Transonic Nozzle
Quentin Rendu,
Quentin Rendu
Laboratoire de Mécanique des Fluides et
d'Acoustique,
Université Claude Bernard Lyon 1,
Université de Lyon,
43 Boulevard du 11 Novembre 1918,
Villeurbanne 69100, France
e-mail: quentin.rendu@univ-lyon1.fr
d'Acoustique,
Université Claude Bernard Lyon 1,
Université de Lyon,
43 Boulevard du 11 Novembre 1918,
Villeurbanne 69100, France
e-mail: quentin.rendu@univ-lyon1.fr
Search for other works by this author on:
Yannick Rozenberg,
Yannick Rozenberg
Laboratoire de Mécanique des Fluides et
d'Acoustique,
Université Claude Bernard Lyon 1,
Université de Lyon,
43 Boulevard du 11 Novembre 1918,
Villeurbanne 69100, France
d'Acoustique,
Université Claude Bernard Lyon 1,
Université de Lyon,
43 Boulevard du 11 Novembre 1918,
Villeurbanne 69100, France
Search for other works by this author on:
Stéphane Aubert,
Stéphane Aubert
Laboratoire de Mécanique des Fluides et
d'Acoustique,
École Centrale Lyon,
Université de Lyon,
Ecully 69134, France
e-mail: stephane.aubert@ec-lyon.fr
d'Acoustique,
École Centrale Lyon,
Université de Lyon,
36, avenue Guy de Collongue
,Ecully 69134, France
e-mail: stephane.aubert@ec-lyon.fr
Search for other works by this author on:
Pascal Ferrand
Pascal Ferrand
Laboratoire de Mécanique des Fluides et
d'Acoustique,
École Centrale Lyon,
Université de Lyon,
Ecully 69134, France
d'Acoustique,
École Centrale Lyon,
Université de Lyon,
36, avenue Guy de Collongue
,Ecully 69134, France
Search for other works by this author on:
Quentin Rendu
Laboratoire de Mécanique des Fluides et
d'Acoustique,
Université Claude Bernard Lyon 1,
Université de Lyon,
43 Boulevard du 11 Novembre 1918,
Villeurbanne 69100, France
e-mail: quentin.rendu@univ-lyon1.fr
d'Acoustique,
Université Claude Bernard Lyon 1,
Université de Lyon,
43 Boulevard du 11 Novembre 1918,
Villeurbanne 69100, France
e-mail: quentin.rendu@univ-lyon1.fr
Yannick Rozenberg
Laboratoire de Mécanique des Fluides et
d'Acoustique,
Université Claude Bernard Lyon 1,
Université de Lyon,
43 Boulevard du 11 Novembre 1918,
Villeurbanne 69100, France
d'Acoustique,
Université Claude Bernard Lyon 1,
Université de Lyon,
43 Boulevard du 11 Novembre 1918,
Villeurbanne 69100, France
Stéphane Aubert
Laboratoire de Mécanique des Fluides et
d'Acoustique,
École Centrale Lyon,
Université de Lyon,
Ecully 69134, France
e-mail: stephane.aubert@ec-lyon.fr
d'Acoustique,
École Centrale Lyon,
Université de Lyon,
36, avenue Guy de Collongue
,Ecully 69134, France
e-mail: stephane.aubert@ec-lyon.fr
Pascal Ferrand
Laboratoire de Mécanique des Fluides et
d'Acoustique,
École Centrale Lyon,
Université de Lyon,
Ecully 69134, France
d'Acoustique,
École Centrale Lyon,
Université de Lyon,
36, avenue Guy de Collongue
,Ecully 69134, France
1Corresponding author.
Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received March 14, 2017; final manuscript received September 28, 2017; published online November 21, 2017. Editor: Kenneth Hall.
J. Turbomach. Feb 2018, 140(2): 021004 (10 pages)
Published Online: November 21, 2017
Article history
Received:
March 14, 2017
Revised:
September 28, 2017
Citation
Rendu, Q., Rozenberg, Y., Aubert, S., and Ferrand, P. (November 21, 2017). "Influence of Acoustic Blockage on Flutter Instability in a Transonic Nozzle." ASME. J. Turbomach. February 2018; 140(2): 021004. https://doi.org/10.1115/1.4038279
Download citation file:
Get Email Alerts
Cited By
Related Articles
Radial Decomposition of Blade Vibration to Identify a Stall Flutter Source in a Transonic Fan
J. Turbomach (October,2019)
Numerical Study on Aeroelastic Instability for a Low-Speed Fan
J. Turbomach (July,2017)
On the Importance of Engine-Representative Models for Fan Flutter Predictions
J. Turbomach (August,2018)
A Simple Model for Identifying the Flutter Bite of Fan Blades
J. Turbomach (July,2017)
Related Proceedings Papers
Related Chapters
Discussion
Ultrasonic Methods for Measurement of Small Motion and Deformation of Biological Tissues for Assessment of Viscoelasticity
Aerodynamic Performance Analysis
Axial-Flow Compressors
Occlusion Identification and Relief within Branched Structures
Biomedical Applications of Vibration and Acoustics in Therapy, Bioeffect and Modeling