Airfoil shapes tailored to specific inflow conditions and loading requirements can offer a significant performance potential over classic airfoil shapes. However, their optimal operating range has to be matched thoroughly to the overall compressor layout. This paper describes methods to organize a large set of optimized airfoils in a database and its application in the throughflow design. Optimized airfoils are structured in five dimensions: inlet Mach number, blade stagger angle, pitch–chord ratio, maximum thickness–chord ratio, and a parameter for aerodynamic loading. In this space, a high number of airfoil geometries are generated by means of numerical optimization. During the optimization of each airfoil, the performance at design and off-design conditions is evaluated with the blade-to-blade flow solver MISES. Together with the airfoil geometry, the database stores automatically calibrated correlations which describe the cascade performance in throughflow calculation. Based on these methods, two subsonic stages of a 4.5-stage transonic research compressor are redesigned. Performance of the baseline and updated geometry is evaluated with 3D CFD. The overall approach offers accurate throughflow design incorporating optimized airfoil shapes and a fast transition from throughflow to 3D CFD design.

References

1.
Lieblein
,
S.
, and
Johnsen
,
I.
,
1961
, “
Resume of Transonic-Compressor Research at NACA Lewis Laboratory
,”
ASME J. Eng. Power
,
83
(
3
), pp.
219
232
.
2.
Johnsen
,
I.
, and
Bullock
,
R.
,
1965
, “
Aerodynamical Design of Axial-Flow Compressors
,” NASA Lewis Research Center, Cleveland, OH,
Report No. NASA-SP-36
.https://ntrs.nasa.gov/search.jsp?R=19650013744
3.
Hobbs
,
D.
, and
Weingold
,
H.
,
1984
, “
Development of Controlled Diffusion Airfoils for Multistage Compressor Application
,”
ASME J. Eng. Gas Turbines Power
,
106
(
2
), pp.
271
278
.
4.
Köller
,
U.
,
Mönig
,
R.
,
Küsters
,
B.
, and
Schreiber
,
H.-A.
,
2000
, “
Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines—Part I: Design and Optimization
,”
ASME J. Turbomach.
,
122
(
3
), pp.
397
405
.
5.
Kösters
,
B.
,
Schreiber
,
H.-A.
,
Köller
,
U.
, and
Mönig
,
R.
,
2000
, “
Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines—Part II: Experimental and Theoretical Analysis
,”
ASME J. Turbomach.
,
122
(
3
), pp.
406
414
.
6.
Aulich
,
M.
,
Voss
,
C.
, and
Raitor
,
T.
,
2014
, “
Optimization Strategies Demonstrated on a Transonic Centrifugal Compressor
,” ISROMAC 15, Honolulu, HI, Feb. 24–28.
7.
Voss
,
C.
,
Aulich
,
M.
, and
Raitor
,
T.
,
2014
, “
Metamodel Assisted Aeromechanical Optimization of a Transonic Centrifugal Compressor
,” ISROMAC 15, Honolulu, HI, Feb. 24–28.
8.
Drela
,
M.
, and
Youngren
,
H.
,
1998
, “
A User's Guide to MISES 2.53
,” MIT Aerospace Computational Design Laboratory, Cambridge, MA.
9.
Youngren
,
H.
,
1991
, “
Analysis and Design of Transonic Cascades With Splitter Vanes
,” Gas Turbine Laboratory, Massachusetts Institute of Technology, Cambridge, MA,
Report No. 203
.http://hdl.handle.net/1721.1/13825
10.
Fuchs
,
R.
,
Schreiber
,
H. A.
,
Steinert
,
W.
, and
Küsters
,
B.
,
1998
, “
Ein Verlustminimiertes Verdichtergitter für Einen Transsonischen Rotor—Entwurf und Analyse
,” VDI-Berichte (1425), pp.
259
270
.
11.
Schnoes
,
M.
, and
Nicke
,
E.
,
2015
, “
Automated Calibration of Compressor Loss and Deviation Correlations
,”
ASME
Paper No. GT2015-42644.
12.
Lieblein
,
S.
,
1957
, “
Analysis of Experimental Low-Speed Loss and Stall Characteristics of Two-Dimensional Compressor Blade Cascades
,” National Advisory Committee for Aeronautics, Lewis Flight Propulsion Lab, Cleveland, OH, Report No. NACA-RM-E57A28.
13.
Grieb
,
H.
,
2009
,
Verdichter für Turbo-Flugtriebwerke
,
Springer
, Berlin, Heidelberg.
14.
Aungier
,
R. H.
,
2003
,
Axial-Flow Compressors
,
ASME Press
, New York.
15.
Widenius
,
M.
, and
Axmark
,
D.
,
2002
,
Mysql Reference Manual
, 1st ed.,
O'Reilly & Associates
,
Sebastopol, CA
.
16.
Schönweitz
,
D.
,
Voges
,
M.
,
Goinis
,
G.
,
Enders
,
G.
, and
Johann
,
E.
,
2013
, “
Experimental and Numerical Examinations of a Transonic Compressor-Stage With Casing Treatment
,”
ASME
Paper No. GT2013-95550.
17.
Schmitz
,
A.
,
Aulich
,
M.
, and
Nicke
,
E.
,
2011
, “
Novel Approach for Loss and Flow-Turning Prediction Using Optimized Surrogate Models in Two-Dimensional Compressor Design
,”
ASME
Paper No. GT2011-45086.
18.
Schmitz
,
A.
,
Aulich
,
M.
,
Schönweitz
,
D.
, and
Nicke
,
E.
,
2012
, “
Novel Performance Prediction of a Transonic 4.5-Stage Compressor
,”
ASME
Paper No. GT2012-69003.
19.
Grieb
,
H.
,
Schill
,
G.
, and
Gumucio
,
R.
,
1975
, “
A Semi-Empirical Method for the Determination of Multistage Axial Compressor Stage Efficiency
,”
ASME
Paper No. 75-GT-11.
20.
Lakshminarayana
,
B.
,
1970
, “
Methods of Predicting the Tip Clearance Effects in Axial Flow Turbomachinery
,”
ASME J. Basic Eng.
,
92
(
3
), pp.
467
482
.
21.
Roberts
,
W. B.
,
Serovy
,
G. K.
, and
Sandercock
,
D. M.
,
1986
, “
Modeling the 3-D Flow Effects on Deviation Angle for Axial Compressor Middle Stages
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
131
137
.
22.
Banjac
,
M.
,
Petrovic
,
V.
, and
Wiedermann
,
A.
,
2014
, “
Secondary Flows, Endwall Effects and Stall Detection in Axial Compressor Design
,”
ASME
Paper No. GT2014-25115.
23.
Gallimore
,
S. J.
, and
Cumpsty
,
N. A.
,
1986
, “
Spanwise Mixing in Multistage Axial Flow Compressors: Part I—Experimental Investigation
,”
ASME J. Turbomach.
,
108
(
1
), pp.
2
9
.
24.
Gallimore
,
S. J.
,
1986
, “
Spanwise Mixing in Multistage Axial Flow Compressors: Part II—Throughflow Calculations Including Mixing
,”
ASME J. Turbomach.
,
108
(
1
), pp.
10
16
.
25.
Kügeler
,
E.
,
Weber
,
A.
,
Nürnberger
,
D.
, and
Engel
,
K.
,
2008
, “
Influence of Blade Fillets on the Performance of a 15 Stage Gas Turbine Compressor
,”
ASME
Paper No. GT2008-50748.
26.
Becker
,
K.
,
Heitkamp
,
K.
, and
Kügeler
,
E.
,
2010
, “
Recent Progress in a Hybrid-Grid CFD Solver for Turbomachinery Flows
,”
ECCOMAS CFD 2010
, Lisbon, Portugal, June 14–17.https://www.researchgate.net/profile/Edmund_Kuegeler/publication/225006412_Recent_Progress_In_A_Hybrid-Grid_CFD_Solver_For_Turbomachinery_Flows/links/00b7d53382c94874b4000000.pdf
You do not currently have access to this content.