Turbine blade components in an engine are typically designed with gaps between parts due to manufacturing, assembly, and operational considerations. Coolant is provided to these gaps to limit the ingestion of hot combustion gases. The interaction of the gaps, their leakage flows, and the complex vortical flow at the endwall of a turbine blade can significantly impact endwall heat transfer coefficients and the effectiveness of the leakage flow in providing localized cooling. In particular, a platform gap through the passage, representing the mating interface between adjacent blades in a wheel, has been shown to have a significant effect. Other important turbine blade features present in the engine environment are nonaxisymmetric contouring of the endwall, and an upstream rim seal with a gaspath cavity, which can reduce and increase endwall vortical flow, respectively. To understand the platform gap leakage effect in this environment, measurements of endwall heat transfer, and film cooling effectiveness were performed in a scaled blade cascade with a nonaxisymmetric contour in the passage. A rim seal with a cavity, representing the overlap interface between a stator and rotor, was included upstream of the blades and a nominal purge flowrate of 0.75% of the mainstream was supplied to the rim seal. The results indicated that the endwall heat transfer coefficients increased as the platform gap net leakage increased from 0% to 0.6% of the mainstream flowrate, but net heat flux to the endwall was reduced due to high cooling effectiveness of the leakage flow.

References

1.
Abo El Ella
,
H. M.
,
Sjolander
,
S. A.
, and
Praisner
,
T. J.
,
2012
, “
Effects of an Upstream Cavity on the Secondary Flow in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
134
(
5
), p.
051009
.
2.
de la Rosa Blanco
,
E.
,
Hodson
,
H. P.
, and
Vazquez
,
R.
,
2009
, “
Effect of the Leakage Flows and the Upstream Platform Geometry on the Endwall Flows of a Turbine Cascade
,”
ASME J. Turbomach.
,
131
(
1
), p.
011004
.
3.
Piggush
,
J.
, and
Simon
,
T. W.
,
2005
, “
Flow Measurements in a First Stage Nozzle Cascade Having Leakage and Assembly Features: Effects of Endwall Steps and Leakage on Aerodynamic Losses
,”
ASME
Paper No. IMECE2005-83032.
4.
Reid
,
K.
,
Denton
,
J. D.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
, “
The Effect of Stator-Rotor Hub Sealing Flow on the Mainstream Aerodynamics of a Turbine
,”
ASME
Paper No. GT2006-90838.
5.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2012
, “
Effects of Orientation and Position of the Combustor-Turbine Interface on the Cooling of a Vane Endwall
,”
ASME J. Turbomach.
,
134
(
6
), p.
061019
.
6.
Popović
,
I.
, and
Hodson
,
H. P.
,
2013
, “
Aerothermal Impact of the Interaction between Hub Leakage and Mainstream Flows in Highly-Loaded High Pressure Turbine Blades
,”
ASME J. Turbomach.
,
135
(
6
)
, p.
061014
.
7.
Popovíc
,
I.
, and
Hodson
,
H. P.
,
2013
, “
Improving Turbine Stage Efficiency and Sealing Effectiveness through Modifications of the Rim Seal Geometry
,”
ASME J. Turbomach.
,
135
(
6
), p.
061016
.
8.
Popović
,
I.
, and
Hodson
,
H. P.
,
2013
, “
The Effects of a Parametric Variation of the Rim Seal Geometry on the Interaction between Hub Leakage and Mainstream Flows in High Pressure Turbines
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
112501
.
9.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
,
2007
, “
The Interaction of Turbine Inter-Platform Leakage Flow With the Mainstream Flow
,”
ASME J. Turbomach.
,
129
(
2
), pp.
303
310
.
10.
Jain
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
,
Ekkad
,
S.
,
Lohaus
,
A. S.
, and
Taremi
,
F.
,
2014
, “
Aerodynamic Performance of a Transonic Turbine Blade Passage in Presence of Upstream Slot and Mateface Gap with Endwall Contouring
,”
ASME
Paper No. GT2014-26475.
11.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
,
2006
, “
Effect of Midpassage Gap, Endwall Misalignment, and Roughness on Endwall Film-Cooling
,”
ASME J. Turbomach.
,
128
(
1
), pp.
62
70
.
12.
Piggush
,
J. D.
, and
Simon
,
T. W.
,
2007
, “
Heat Transfer Measurements in a First-Stage Nozzle Cascade Having Endwall Contouring: Misalignment and Leakage Studies
,”
ASME J. Turbomach.
,
129
(
4
), pp.
782
790
.
13.
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2011
, “
The Effect of the Combustor-Turbine Slot and Midpassage Gap on Vane Endwall Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
)
, p.
041002
.
14.
Roy
,
A.
,
Jain
,
S.
,
Ekkad
,
S.
,
Ng
,
W. F.
,
Lohaus
,
A. S.
, and
Crawford
,
M. E.
, “
Heat Transfer Performance of a Transonic Turbine Blade Passage in Presence of Leakage Flow through Upstream Slot and Mateface Gap with Endwall Contouring
,”
ASME
Paper No. GT2014-26476.
15.
Gustafson
,
R.
,
Mahmood
,
G. I.
, and
Acharya
,
S.
,
2007
, “
Aerodynamic Measurements in a Linear Turbine Blade Passage With Three-Dimensional Endwall Contouring
,”
ASME
Paper No. GT2007-28073.
16.
Knezevici
,
D. C.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Grover
,
E. A.
,
2010
, “
Measurements of Secondary Losses in a Turbine Cascade with the Implementation of Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
132
(
1
), p.
011013
.
17.
Lynch
,
S. P.
,
Sundaram
,
N.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2011
, “
Heat Transfer for a Turbine Blade with Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
133
(
1
), p.
011019
.
18.
Panchal
,
K. V.
,
Abraham
,
S.
,
Ekkad
,
S.
,
Ng
,
W. F.
,
Lohaus
,
A. S.
, and
Crawford
,
M. E.
,
2012
, “
Effect of Endwall Contouring on a Transonic Turbine Blade Passage: Heat Transfer Performance
,”
ASME J. Turbomach.
,
139
(
1
), p.
011009
.
19.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M.
, and
Gier
,
J.
,
2011
, “
Influence of Rim Seal Purge Flow on Performance of an Endwall-Profiled Axial Turbine
,”
ASME J. Turbomach.
,
133
(
2
), p.
021011
.
20.
Turgut
,
O.
, and
Camci
,
C.
, “
Influence of Leading Edge Fillet and Nonaxisymmetric Contoured Endwall on Turbine NGV Exit Flow Structure and Interactions With Rim Seal Flow
,”
ASME
Paper No. GT2013-95843.
21.
Regina
,
K.
,
Kalfas
,
A.
,
Abhari
,
R. S.
,
Lohaus
,
A. S.
,
Voelker
,
S.
, and
auf dem Kampf
,
T.
, “
Aerodynamic Robustness of End Wall Contouring Against Rim Seal Purge Flow
,”
ASME
Paper No. GT2014-26607.
22.
Lynch
,
S. P.
,
Thole
,
K.
,
Kohli
,
A.
,
Lehane
,
C.
, and
Praisner
,
T. J.
,
2013
, “
Aerodynamic Loss for a Turbine Blade with Endwall Leakage Features and Contouring
,”
ASME
Paper No. GT2013-94943.
23.
Lynch
,
S. P.
,
Thole
,
K.
,
Kohli
,
A.
,
Lehane
,
C.
, and
Praisner
,
T. J.
,
2013
, “
Endwall Heat Transfer for a Turbine Blade With an Upstream Cavity and Rim Seal Leakage
,”
ASME
Paper No. GT2013-94942.
24.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S. A.
,
2007
, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,”
ASME J. Turbomach.
,
135
(
6
), p.
061006
.
25.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design: Part I—Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
(
2
), pp.
278
285
.
26.
MacIsaac
,
G. D.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Grover
,
E. A.
, and
Jurek
,
R.
,
2013
, “
Effects of Simplified Platform Overlap and Cavity Geometry on the Endwall Flow: Measurements and Computations in a Low-Speed Linear Turbine Cascade
,”
ASME
Paper No. GT2013-95670.
27.
Kang
,
M. B.
,
Kohli
,
A.
, and
Thole
,
K. A.
,
1999
, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
,
121
(
3
), pp.
558
568
.
28.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm Fluid Sci.
,
1
(
1
), pp.
3
17
.
29.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
(
4
), pp.
800
806
.
30.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Heat Flux Reduction From Film Cooling and Correlation of Heat Transfer Coefficients From Thermographic Measurements at Enginelike Conditions
,”
ASME J. Turbomach.
,
124
(
4
), pp.
699
709
.
You do not currently have access to this content.