Turbine blade components in an engine are typically designed with gaps between parts due to manufacturing, assembly, and operational considerations. Coolant is provided to these gaps to limit the ingestion of hot combustion gases. The interaction of the gaps, their leakage flows, and the complex vortical flow at the endwall of a turbine blade can significantly impact endwall heat transfer coefficients and the effectiveness of the leakage flow in providing localized cooling. In particular, a platform gap through the passage, representing the mating interface between adjacent blades in a wheel, has been shown to have a significant effect. Other important turbine blade features present in the engine environment are nonaxisymmetric contouring of the endwall, and an upstream rim seal with a gaspath cavity, which can reduce and increase endwall vortical flow, respectively. To understand the platform gap leakage effect in this environment, measurements of endwall heat transfer, and film cooling effectiveness were performed in a scaled blade cascade with a nonaxisymmetric contour in the passage. A rim seal with a cavity, representing the overlap interface between a stator and rotor, was included upstream of the blades and a nominal purge flowrate of 0.75% of the mainstream was supplied to the rim seal. The results indicated that the endwall heat transfer coefficients increased as the platform gap net leakage increased from 0% to 0.6% of the mainstream flowrate, but net heat flux to the endwall was reduced due to high cooling effectiveness of the leakage flow.
Skip Nav Destination
Article navigation
Research-Article
Heat Transfer and Film Cooling on a Contoured Blade Endwall With Platform Gap Leakage
Stephen P. Lynch,
Stephen P. Lynch
Mechanical and Nuclear
Engineering Department,
The Pennsylvania State University,
University Park, PA 16802
e-mail: splynch@psu.edu
Engineering Department,
The Pennsylvania State University,
University Park, PA 16802
e-mail: splynch@psu.edu
Search for other works by this author on:
Karen A. Thole
Karen A. Thole
Mechanical and Nuclear
Engineering Department,
The Pennsylvania State University,
University Park, PA 16802
e-mail: kthole@psu.edu
Engineering Department,
The Pennsylvania State University,
University Park, PA 16802
e-mail: kthole@psu.edu
Search for other works by this author on:
Stephen P. Lynch
Mechanical and Nuclear
Engineering Department,
The Pennsylvania State University,
University Park, PA 16802
e-mail: splynch@psu.edu
Engineering Department,
The Pennsylvania State University,
University Park, PA 16802
e-mail: splynch@psu.edu
Karen A. Thole
Mechanical and Nuclear
Engineering Department,
The Pennsylvania State University,
University Park, PA 16802
e-mail: kthole@psu.edu
Engineering Department,
The Pennsylvania State University,
University Park, PA 16802
e-mail: kthole@psu.edu
Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received November 18, 2015; final manuscript received October 18, 2016; published online January 24, 2017. Editor: Kenneth Hall.
J. Turbomach. May 2017, 139(5): 051002 (10 pages)
Published Online: January 24, 2017
Article history
Received:
November 18, 2015
Revised:
October 18, 2016
Citation
Lynch, S. P., and Thole, K. A. (January 24, 2017). "Heat Transfer and Film Cooling on a Contoured Blade Endwall With Platform Gap Leakage." ASME. J. Turbomach. May 2017; 139(5): 051002. https://doi.org/10.1115/1.4035202
Download citation file:
Get Email Alerts
Flow and Heat Transfer in a Rotating Disc Cavity With Axial Throughflow at High-Speed Conditions
J. Turbomach (September 2025)
Biot Number Error in Low-Temperature Inconel Overall Effectiveness Experiments
J. Turbomach (September 2025)
Related Articles
Investigation of Unsteady Flow Phenomena in First Vane Caused by Combustor Flow With Swirl
J. Turbomach (April,2017)
Erratum: “Film Cooling Extraction Effects on the Aero-Thermal Characteristics of Rib Roughened Cooling Channel Flow” [ASME J. Turbomach., 135(2), p. 021016; DOI: 10.1115/1.4007501 ]
J. Turbomach (August,2018)
HIGH EFFECTIVENESS TIP COOLING USING INCLINED SLOTS
J. Turbomach (January,0001)
Control of Tip Leakage in a High-Pressure Turbine Cascade Using Tip Blowing
J. Turbomach (June,2017)
Related Proceedings Papers
Related Chapters
Insights and Results of the Shutdown PSA for a German SWR 69 Type Reactor (PSAM-0028)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Aerodynamic Performance Analysis
Axial-Flow Compressors
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential