This paper presents a thermal investigation of the integrated combustor vane concept for power generation gas turbines with individual can combustors. This concept has the potential to replace the high-pressure turbine’s first vanes by prolonged combustor walls. Experimental measurements are performed on a linear high-speed cascade consisting of two can combustors and two integrated vanes. The modularity of the facility allows for the testing at engine-realistic high turbulence levels, as well as swirl strengths with opposing swirl directions. The heat transfer characteristics of the integrated vanes are compared to conventional nozzle guide vanes. The experimental measurements are supported by detailed numerical simulations using the in-house computational fluid dynamics (CFD) code TBLOCK. Experimental as well as numerical results congruently indicate a considerable reduction of the heat transfer coefficient (HTC) on the integrated vanes surfaces and endwalls caused by a differing state of boundary layer thickness. The studies furthermore depict a slight, nondetrimental shift in the heat transfer coefficient distributions and the strength of the integrated vanes secondary flows as a result of engine-realistic combustor swirl.

References

1.
Hada
,
S.
,
Yuri
,
M.
,
Masada
,
J.
,
Ito
,
E.
, and
Tsukagoshi
,
K.
,
2012
, “
Evolution and Future Trend of Large Frame Gas Turbines: A New 1600 Degree C, J Class Gas Turbine
,”
ASME
Paper No. GT2012-68574.
2.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
Boca Raton, FL
.
3.
Dunn
,
M.
,
1985
, “
Turbine Heat Flux Measurements: Influence of Slot Injection on Vane Trailing Edge Heat Transfer and Influence of Rotor on Vane Heat Transfer
,”
ASME J. Eng. Gas Turbines Power
,
107
(
1
), pp.
76
83
.
4.
Nealy
,
D.
,
Mihelc
,
M.
,
Hylton
,
L.
, and
Gladden
,
H.
,
1984
, “
Measurements of Heat Transfer Distribution Over the Surfaces of Highly Loaded Turbine Nozzle Guide Vanes
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
149
158
.
5.
Ames
,
F.
,
1997
, “
The Influence of Large-Scale High-Intensity Turbulence on Vane Heat Transfer
,”
ASME J. Turbomach.
,
119
(
1
), pp.
23
30
.
6.
Cha
,
C. M.
,
Hong
,
S.
,
Ireland
,
P. T.
,
Denman
,
P.
, and
Savarianandam
,
V.
,
2012
, “
Turbulence Levels Are High at the Combustor-Turbine Interface
,”
ASME Paper No. GT2012-69130
.
7.
Abuaf
,
N.
,
Bunker
,
R.
, and
Lee
,
C.
,
1998
, “
Effects of Surface Roughness on Heat Transfer and Aerodynamic Performance of Turbine Airfoils
,”
ASME J. Turbomach.
,
120
(
3
), pp.
522
529
.
8.
Qureshi
,
I.
,
Smith
,
A. D.
, and
Povey
,
T.
,
2012
, “
HP Vane Aerodynamics and Heat Transfer in the Presence of Aggressive Inlet Swirl
,”
ASME J. Turbomach.
,
135
(
2
), p.
021040
.
9.
Qureshi
,
I.
,
Beretta
,
A.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2012
, “
Effect of Aggressive Inlet Swirl on Heat Transfer and Aerodynamics in an Unshrouded Transonic Hp Turbine
,”
ASME J. Turbomach.
,
134
(
6
), p.
061023
.
10.
Khanal
,
B.
,
He
,
L.
,
Northall
,
J.
, and
Adami
,
P.
,
2013
, “
Analysis of Radial Migration of Hot-Streak in Swirling Flow Through High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
135
(
4
), p.
041005
.
11.
Thole
,
K.
,
2006
, “
Airfoil Endwall Heat Transfer
,”
The Gas Turbine Handbook
,
National Energy Technology Laboratory, DOE
,
Morgantown, WV
.
12.
Langston
,
L.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
102
(
4
), pp.
866
874
.
13.
Sharma
,
O.
, and
Butler
,
T.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.
14.
Goldstein
,
R.
, and
Spores
,
R.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
(4a), pp.
862
869
.
15.
Denton
,
J.
, and
Pullan
,
G.
,
2012
, “
A Numerical Investigation Into the Sources of Endwall Loss in Axial Flow Turbines
,”
ASME
Paper No. GT2012-69173.
16.
Gregory-Smith
,
D.
,
Graves
,
C.
, and
Walsh
,
J.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
1
8
.
17.
Sieverding
,
C.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
.
18.
Shih
,
T. I.-P.
, and
Lin
,
Y.-L.
,
2003
, “
Controlling Secondary-Flow Structure by Leading-Edge Airfoil Fillet and Inlet Swirl to Reduce Aerodynamic Loss and Surface Heat Transfer
,”
ASME J. Turbomach.
,
125
(
1
), pp.
48
56
.
19.
Lethander
,
A.
,
Thole
,
K. A.
,
Zess
,
G.
, and
Wagner
,
J.
,
2004
, “
Vane-Endwall Junction Optimization to Reduce Turbine Vane Passage Adiabatic Wall Temperatures
,”
J. Propul. Power
,
20
(
6
), pp.
1096
1104
.
20.
Han
,
S.
, and
Goldstein
,
R.
,
2006
, “
Influence of Blade Leading Edge Geometry on Turbine Endwall Heat (Mass) Transfer
,”
ASME J. Turbomach.
,
128
(
4
), pp.
798
813
.
21.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahrokh
,
J.
, and
Gregory-Smith
,
D. G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design—Part I: Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
(
2
), pp.
278
285
.
22.
Brennan
,
G.
,
Harvey
,
N. W.
,
Rose
,
M. G.
,
Fomison
,
N.
, and
Taylor
,
M.
,
2003
, “
Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric End Walls—Part 1: Turbine Design
,”
ASME J. Turbomach.
,
125
(
3
), pp.
497
504
.
23.
Hartland
,
J. C.
,
Gregory-Smith
,
P. G.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design—Part II: Experimental Validation
,”
ASME J. Turbomach.
,
122
(
2
), pp.
286
293
.
24.
Rose
,
M. G.
,
Harvey
,
N. W.
,
Seaman
,
P.
,
Newman
,
D. A.
, and
McManus
,
D.
,
2001
, “
Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric End Walls—Part 2: Experimental Validation
,”
ASME
Paper No. 2001-GT-0505.
25.
Rosic
,
B.
,
Denton
,
J.
,
Horlock
,
J.
, and
Uchida
,
S.
,
2011
, “
Integrated Combustor and Vane Concept in Gas Turbines
,”
ASME J. Turbomach.
,
134
(
3
), p.
031005
.
26.
Mazzoni
,
C.
,
Klostermeier
,
C.
, and
Rosic
,
B.
,
2014
, “
Influence of Large Wake Disturbances Shed From the Combustor Wall on the Leading Edge Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
081503
.
27.
Jacobi
,
S.
, and
Rosic
,
B.
,
2015
, “
Development and Aerothermal Investigation of Integrated Combustor Vane Concept
,”
ASME J. Turbomach.
,
138
(
1
), p.
011002
.
28.
Luque
,
S.
,
Kanjirakkad
,
V.
,
Aslanidou
,
I.
,
Lubbock
,
R.
, and
Rosic
,
B.
,
2015
, “
A New Experimental Facility to Investigate Combustor-Turbine Interactions in Gas Turbines With Multiple Can Combustors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
5
), p.
051503
.
29.
Roach
,
P.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.
30.
Oldfield
,
M.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.
31.
Denton
,
J. D.
,
1983
, “
An Improved Time-Marching Method for Turbomachinery Flow Calculation
,”
ASME J. Eng. Power
,
105
(
3
), pp.
514
521
.
32.
Mazzoni
,
C.
,
Luque
,
S.
, and
Rosic
,
B.
,
2015
, “
Capabilities of Thermal Wall Functions to Predict Heat Transfer on the NGVS of a Gas Turbine With Multiple Can Combustors
,”
ASME
Paper No. GT2015-43515.
33.
Reynolds
,
W.
,
Kays
,
W.
, and
Kline
,
S.
,
1958
, “
Heat Transfer in a Turbulent Incompressible Boundary Layer. I: Constant Wall Temperature
,”
Report No. NASA Memo 12-1-58W
.
You do not currently have access to this content.