This paper investigates the impacts of uneven wall heating conditions under different buoyancy numbers on flow field and heat transfer performance of a rotating channel with one side smooth and one side roughened by 45 deg inclined ribs. Parametric Reynolds-averaged Navier–Stokes (RANS) simulations were conducted under two different wall heating conditions: only ribbed wall heated, as in experiment setup, and all walls heated, under three different buoyancy numbers. Results are compared, when available, with experimental results. Numerical results show that uneven wall heating has only a minor impact on nonrotating cases and very low buoyancy rotating cases. However, it has a significant influence, on both, the heat transfer behavior and the flow field, when the buoyancy number is large. In the ribbed trailing rotating tests, the all walls heated cases show significantly higher heat transfer rate than only the ribbed wall heated cases. The discrepancy is enlarged as buoyancy number increases. The heat transfer in the all walls heated case increases monotonically with the buoyancy number, whereas in the ribbed wall, heated case is slight reduced. In the ribbed leading rotating tests, the heat transfer sensitivity to the heating conditions is not conspicuous, and for both cases, the heat transfer level slightly reduced as the buoyancy number increased. The flow field investigation shows that there is a significant displacement of main flow in the all walls heated cases than only the ribbed wall heated cases under high buoyancy numbers. This displacement is due to the buoyancy effect and responsible for the heat transfer differences in uneven heating problems. According to the results obtained in the paper, we conclude that when buoyancy effects are relevant, the heating settings can play a significant role in the heat transfer mechanisms and therefore in the experimental and numerical results.

References

1.
Han
,
J. C.
,
1988
, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Tabulators
,”
ASME J. Heat Transfer
,
110
(2), pp.
321
328
.
2.
Park
,
J.
,
Han
,
J.
,
Huang
,
Y.
,
Ou
,
S.
, and
Boyle
,
R.
,
1992
, “
Heat Transfer Performance Comparisons of Five Different Rectangular Channels With Parallel Angled Ribs
,”
Int. J. Heat Mass Transfer
,
35
(
11
), pp.
2891
2903
.
3.
Wright
,
L. M.
,
Fu
,
W.-L.
, and
Han
,
J.-C.
,
2005
, “
Influence of Entrance Geometry on Heat Transfer in Rotating Rectangular Cooling Channels (AR = 4:1) With Angled Ribs
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
378
387
.
4.
Huh
,
M.
,
Lei
,
J.
, and
Han
,
J.-C.
,
2012
, “
Influence of Channel Orientation on Heat Transfer in a Two-Pass Smooth and Ribbed Rectangular Channel (AR = 2:1) Under Large Rotation Numbers
,”
ASME J. Turbomach.
,
134
(
1
), p.
011022
.
5.
Taslim
,
M.
, and
Spring
,
S.
,
1994
, “
Effects of Turbulator Profile and Spacing on Heat Transfer and Friction in a Channel
,”
J. Thermophys. Heat Transfer
,
8
(
3
), pp.
555
562
.
6.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T. J.
,
1991
, “
Heat Transfer in Rotating Passages With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
,
113
(
1
), pp.
42
51
.
7.
Johnson
,
B.
,
Wagner
,
J.
,
Steuber
,
G.
, and
Yeh
,
F.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages With Trips Skewed to the Flow
,”
ASME J. Turbomach.
,
116
(
1
), pp.
113
123
.
8.
Fu
,
W.-L.
,
Wright
,
L. M.
, and
Han
,
J.-C.
,
2004
, “
Heat Transfer in Two-Pass Rotating Rectangular Channels (AR = 1:2 and AR = 1:4) With 45 Angled Rib Turbulators
,”
ASME
Paper No. GT2004-53261.
9.
Griffith
,
T. S.
,
Al-Hadhrami
,
L.
, and
Han
,
J.-C.
,
2002
, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR = 4) With Angled Ribs
,”
ASME J. Heat Transfer
,
124
(
4
), pp.
617
625
.
10.
Liu
,
Y.-H.
,
Wright
,
L. M.
,
Fu
,
W.-L.
, and
Han
,
J.-C.
,
2007
, “
Rib Spacing Effect on Heat Transfer in Rotating Two-Pass Ribbed Channel (AR = 1:2)
,”
J. Thermophys. Heat Transfer
,
21
(
3
), pp.
582
595
.
11.
Liou
,
T.-M.
,
Chang
,
S.
,
Chen
,
J.
,
Yang
,
T.
, and
Lan
,
Y.-A.
,
2009
, “
Influence of Channel Aspect Ratio on Heat Transfer in Rotating Rectangular Ducts With Skewed Ribs at High Rotation Numbers
,”
Int. J. Heat Mass Transfer
,
52
(
23
), pp.
5309
5322
.
12.
Huh
,
M.
,
Lei
,
J.
,
Liu
,
Y.-H.
, and
Han
,
J.-C.
,
2011
, “
High Rotation Number Effects on Heat Transfer in a Rectangular (AR = 2:1) Two-Pass Channel
,”
ASME J. Turbomach.
,
133
(
2
), p.
021001
.
13.
Iacovides
,
H.
,
Jackson
,
D.
,
Kelemenis
,
G.
,
Launder
,
B.
, and
Yuan
,
Y.-M.
,
2001
, “
Flow and Heat Transfer in a Rotating u-Bend With 45 Ribs
,”
Int. J. Heat Fluid Flow
,
22
(
3
), pp.
308
314
.
14.
Rathjen
,
L.
,
Hennecke
,
D.
,
Sivade
,
C.
, and
Semmler
,
K.
,
2002
, “
Detailed Experimental and Numerical Heat/Mass Transfer Investigations in a Rotating Two-Pass Coolant Channel With Staggered 45 Ribs
,”
Ninth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-9)
, Honolulu, HI, Feb. 10–12.
15.
Viswanathan
,
A. K.
, and
Tafti
,
D. K.
,
2006
, “
Large Eddy Simulation of Fully Developed Flow and Heat Transfer in a Rotating Duct With 45 Degree Ribs
,”
ASME
Paper No. GT2006-90229.
16.
Han
,
J.-C.
, and
Chen
,
H.-C.
,
2006
, “
Turbine Blade Internal Cooling Passages With Rib Turbulators
,”
J. Propul. Power
,
22
(
2
), pp.
226
248
.
17.
Han
,
J.-C.
, and
Huh
,
M.
,
2010
, “
Recent Studies in Turbine Blade Internal Cooling
,”
Heat Transfer Res.
,
41
(
8
), pp. 803–828.
18.
Ligrani
,
P.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rotating Mach.
,
2013
, p. 275653.
19.
Han
,
J.-C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
20.
Mayo
,
I.
,
Arts
,
T.
,
El-Habib
,
A.
, and
Parres
,
B.
,
2015
, “
Two-Dimensional Heat Transfer Distribution of a Rotating Ribbed Channel at Different Reynolds Numbers
,”
ASME J. Turbomach.
,
137
(
3
), p.
031002
.
21.
Mayo
,
I.
,
Lahalle
,
A.
,
Gori
,
G. L.
, and
Arts
,
T.
,
2016
, “
Aerothermal Characterization of a Rotating Ribbed Channel at Engine Representative Conditions—Part II: Detailed Liquid Crystal Thermography Measurements
,”
ASME J. Turbomach.
,
138
(
10
), p.
101009
.
22.
Tanda
,
G.
,
2011
, “
Effect of Rib Spacing on Heat Transfer and Friction in a Rectangular Channel With 45 Angled Rib Turbulators on One/Two Walls
,”
Int. J. Heat Mass Transfer
,
54
(
5
), pp.
1081
1090
.
23.
Wang
,
Z.
,
Corral
,
R.
, and
Chedevergne
,
F.
,
2016
, “
Experimental and Numerical Study of Heat Transfer Performance for an Engine Representative Two-Pass Rotating Internal Cooling Channel
,”
ASME
Paper No. GT2016-57419.
24.
Rau
,
G.
,
Cakan
,
M.
,
Moeller
,
D.
, and
Arts
,
T.
,
1998
, “
The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel
,”
ASME J. Turbomach.
,
120
(
2
), pp.
368
375
.
25.
Coletti
,
F.
,
Jacono
,
D. L.
,
Cresci
,
I.
, and
Arts
,
T.
,
2014
, “
Turbulent Flow in rib-Roughened Channel Under the Effect of Coriolis and Rotational Buoyancy Forces
,”
Phys. Fluids
,
26
(
4
), p.
045111
.
26.
Han
,
J.-C.
, and
Zhang
,
Y.
,
1992
, “
Effect of Uneven Wall Temperature on Local Heat Transfer in a Rotating Square Channel With Smooth Walls and Radial Outward Flow
,”
ASME J. Heat Transfer
,
114
(
4
), pp.
850
858
.
27.
Parsons
,
J. A.
,
Je-Chin
,
H.
, and
Yuming
,
Z.
,
1994
, “
Wall Heating Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With 90 Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
37
(
9
), pp.
1411
1420
.
28.
Zhang
,
Y.
,
Han
,
J.
,
Parsons
,
J.
, and
Lee
,
C.
,
1995
, “
Surface Heating Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With 60 Deg Angled Rib Turbulators
,”
ASME J. Turbomach.
,
117
(
2
), pp.
272
280
.
29.
Hsieh
,
S.-S.
,
Wang
,
Y.-S.
, and
Chiang
,
M.-H.
,
1997
, “
Local Heat Transfer and Velocity Measurements in a Rotating Ribbed Two-Pass Square Channel With Uneven Wall Temperatures
,”
ASME J. Heat Transfer
,
119
(
4
), pp.
843
848
.
30.
Al-Qahtani
,
M.
,
Jang
,
Y.-J.
,
Chen
,
H.-C.
, and
Han
,
J.-C.
,
2002
, “
Prediction of Flow and Heat Transfer in Rotating Two-Pass Rectangular Channels With 45-Deg Rib Turbulators
,”
ASME J. Turbomach.
,
124
(
2
), pp.
242
250
.
31.
Al-Qahtani
,
M.
,
Chen
,
H.-C.
, and
Han
,
J.-C.
,
2003
, “
A Numerical Study of Flow and Heat Transfer in Rotating Rectangular Channels (AR = 4) With 45 Deg Rib Turbulators by Reynolds Stress Turbulence Model
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
19
26
.
32.
Schüler
,
M.
,
Zehnder
,
F.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
, and
Neumann
,
S. O.
,
2011
, “
The Effect of Turning Vanes on Pressure Loss and Heat Transfer of a Ribbed Rectangular Two-Pass Internal Cooling Channel
,”
ASME J. Turbomach.
,
133
(
2
), p.
021017
.
33.
Shevchuk
,
I. V.
,
Jenkins
,
S. C.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
,
Neumann
,
S. O.
, and
Schnieder
,
M.
,
2011
, “
Validation and Analysis of Numerical Results for a Varying Aspect Ratio Two-Pass Internal Cooling Channel
,”
ASME J. Heat Transfer
,
133
(
5
), p.
051701
.
34.
Schüler
,
M.
,
Dreher
,
H.-M.
,
Neumann
,
S.
,
Weigand
,
B.
, and
Elfert
,
M.
,
2012
, “
Numerical Predictions of the Effect of Rotation on Fluid Flow and Heat Transfer in an Engine-Similar Two-Pass Internal Cooling Channel With Smooth and Ribbed Walls
,”
ASME J. Turbomach.
,
134
(
2
), p.
021021
.
35.
Bonhoff
,
B.
,
Parneix
,
S.
,
Leusch
,
J.
,
Johnson
,
B.
,
Schabacker
,
J.
, and
Bölcs
,
A.
,
1999
, “
Experimental and Numerical Study of Developed Flow and Heat Transfer in Coolant Channels With 45 Degree Ribs
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
311
319
.
36.
Saha
,
A. K.
, and
Acharya
,
S.
,
2005
, “
Flow and Heat Transfer in Internally Ribbed Ducts With Rotation: An Assessment of LES and RANS
,”
ASME J. Turbomach.
,
127
(
2
), pp.
306
320
.
37.
Tafti
,
D. K.
,
He
,
L.
, and
Nagendra
,
K.
,
2014
, “
Large Eddy Simulation for Predicting Turbulent Heat Transfer in Gas Turbines
,”
Philos. Trans. R. Soc. London A
,
372
(
2022
), p.
20130322
.
38.
Sewall
,
E. A.
,
Tafti
,
D. K.
,
Graham
,
A. B.
, and
Thole
,
K. A.
,
2006
, “
Experimental Validation of Large Eddy Simulations of Flow and Heat Transfer in a Stationary Ribbed Duct
,”
Int. J. Heat Fluid Flow
,
27
(
2
), pp.
243
258
.
39.
Fransen
,
R.
,
Vial
,
L.
, and
Gicquel
,
L. Y.
,
2013
, “
Large Eddy Simulation of Rotating Ribbed Channel
,”
ASME
Paper No. GT2013-95076.
40.
Burgos
,
M. A.
,
Contreras
,
J.
, and
Corral
,
R.
,
2011
, “
Efficient Edge-Based Rotor/Stator Interaction Method
,”
AIAA J.
,
49
(
1
), pp.
19
31
.
41.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
42.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2012
,
Convective Heat and Mass Transfer
,
Tata McGraw-Hill Education
,
New York
.
43.
Jenkins
,
S. C.
,
Zehnder
,
F.
,
Shevchuk
,
I. V.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Schnieder
,
M.
,
2013
, “
The Effects of Ribs and Tip Wall Distance on Heat Transfer for a Varying Aspect Ratio Two-Pass Ribbed Internal Cooling Channel
,”
ASME J. Turbomach.
,
135
(
2
), p.
021001
.
44.
Abdel-Wahab
,
S.
, and
Tafti
,
D. K.
,
2004
, “
Large Eddy Simulation of Flow and Heat Transfer in a 90 Deg Ribbed Duct With Rotation: Effect of Coriolis and Centrifugal Buoyancy Forces
,”
ASME J. Turbomach.
,
126
(
4
), pp.
627
636
.
You do not currently have access to this content.