Natural convection is an important heat transfer mode for flexible operations of gas turbines and steam turbines. Its prediction presents considerable challenges. The strong interdependence between fluid and solid parts points to the need for coupled fluid–solid conjugate heat transfer (CHT) methods. The fundamental fluid–solid time scale disparity is further compounded by the long-time scales of practical turbine flexible operations. In addition, if a high-fidelity flow model (e.g., large eddy simulation (LES)) is adopted to resolve turbulence fluctuations, extra mesh dependency on solid domain mesh may arise. In this work, understanding of the extra solid mesh dependency in a directly coupled LES based CHT procedure is gained by an interface response analysis, leading to a simple and clear characterization of erroneously predicted unsteady interface temperatures and heat fluxes. A loosely coupled unsteady CHT procedure based on a multiscale methodology for solving problems with large time scale disparity is subsequently developed. A particular emphasis of this work is on efficient and accurate transient CHT solutions in conjunction with the turbulence eddy resolved modeling (LES) for natural convection. A two-scale flow decomposition associated with a corresponding time-step split is adopted. The resultant triple-timing formation of the flow equations can be solved efficiently for the fluid–solid coupled system with disparate time scales. The problem statement, analysis, and the solution methods will be presented with case studies to underline the issues of interest and to demonstrate the validity and effectiveness of the proposed methodology and implemented procedure.

References

1.
Marinescu
,
G.
,
Mohr
,
W. F.
,
Ehrsam
,
A.
,
Ruffino
,
P.
, and
Sell
,
M.
,
2013
, “
Experimental Investigation Into Thermal Behavior of Steam Turbine Components—Temperature Measurements With Optical Probes and Natural Cooling Analysis
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
021602
.
2.
Marinescu
,
G.
,
Stein
,
P.
, and
Sell
,
M.
,
2015
, “
Natural Cooling and Startup of Steam Turbines: Validity of the Over-Conductivity Function
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
112601
.
3.
Maffulli
,
R.
, and
He
,
L.
,
2014
, “
Wall Temperature Effects on Heat Transfer Coefficient for High-Pressure Turbines
,”
J. Propul. Power
,
30
(
4
), pp.
1080
1090
.
4.
Zhang
,
Q.
, and
He
,
L.
,
2014
, “
Impact of Wall Temperature on Turbine Blade Tip Aero-Thermal Performance
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
052602
.
5.
Maffulli
,
R.
, and
He
,
L.
,
2017
, “
Impact of Wall Temperature on Heat Transfer Coefficient and Aerodynamics for Three-Dimensional Turbine Blade Passage
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
4
), p.
041002
.
6.
Topel
,
M.
,
Genrup
,
M.
,
Jöcker
,
M.
,
Spelling
,
J.
, and
Laumert
,
B.
,
2015
, “
Operational Improvements for Start-Up Time Reduction in Solar Steam Turbines
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
042604
.
7.
Born
,
D.
,
Stein
,
P.
,
Marinescu
,
G.
,
Koch
,
S.
, and
Schumacher
,
D.
,
2016
, “
Thermal Modelling of an Intermediate Pressure Steam Turbine by Means of Conjugate Heat Transfer: Simulation and Validation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
031903
.
8.
He
,
L.
, and
Oldfield
,
M. L. G.
,
2011
, “
Unsteady Conjugate Heat Transfer Modeling
,”
ASME J. Turbomach.
,
133
(
3
), p.
031022
.
9.
He
,
L.
,
2013
, “
Fourier Spectral Modelling for Multi-Scale Aero-Thermal Analysis
,”
Int. J. Comput. Fluid Dyn.
,
27
(
2
), pp.
118
129
.
10.
Shahi
,
M.
,
Kok
,
J. B. W.
,
Roman Casado
,
J. C.
, and
Pozarlik
,
A. K.
,
2014
, “
Study of Unsteady Heat Transfer as a Key Parameter to Characterize Limit Cycle of High Amplitude Pressure Oscillations
,”
ASME
Paper No. GT2014-26311.
11.
Sun
,
Z.
,
Chew
,
J. W.
,
Hills
,
N. J.
,
Volkov
,
K. N.
, and
Barnes
,
C. J.
,
2010
, “
Efficient Finite Element Analysis/Computational Fluid Dynamics Thermal Coupling for Engineering Applications
,”
ASME J. Turbomach.
,
132
(
3
), p.
031016
.
12.
Wang
,
Z.
,
Corral
,
R.
,
Chaquet
,
J. M.
, and
Pastor
,
G.
,
2013
, “
Analysis and Improvement of a Loosely Coupled Fluid-Solid Heat Transfer Method
,”
ASME
Paper No. GT2013-94332.
13.
Duchaine
,
F.
,
Corpron
,
A.
,
Pons
,
L.
,
Moureau
,
V.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2009
, “
Development and Assessment of a Coupled Strategy for Conjugate Heat Transfer With Large Eddy Simulation: Application to a Cooled Turbine Blade
,”
Int. J. Heat Fluid Flow
,
30
(
6
), pp.
1129
1141
.
14.
Duchaine
,
F.
,
Boileau
,
M.
,
Sommerer
,
Y.
, and
Poinsot
,
T.
,
2014
, “
Large Eddy Simulation of Flow and Heat Transfer Around Two Square Cylinders in a Tandem Arrangement
,”
ASME J. Heat Transfer
,
136
(
10
), p.
101702
.
15.
Errera
,
M. P.
, and
Baque
,
B.
,
2013
, “
A Quasi-Dynamic Procedure for Coupled Thermal Simulations
,”
Int. J. Numer. Methods Fluids
,
72
(
11
), pp.
1183
1206
.
16.
Fadl
,
M.
,
He
,
L.
,
Stein
,
P.
, and
Marinescu
,
G.
,
2017
, “
Assessment of Unsteadiness Modelling for Transient Natural Convection
,”
ASME
Paper No. GT2017-53592 (in press).
17.
Perelman
,
T. L.
,
1961
, “
On Conjugated Problems of Heat Transfer
,”
Int. J. Heat Mass Transfer
,
3
(
4
), pp.
293
303
.
18.
Faghri
,
A.
, and
Zhang
,
Y.
,
2010
,
Advanced Heat and Mass Transfer
,
Global Digital Press
,
Columbia, MO
, p.
934
.
19.
He
,
L.
, and
Fadl
,
M.
,
2017
, “
Multi-Scale Time Integration for Transient Conjugate Heat Transfer
,”
Int. J. Numer. Methods Fluids
,
83
(
12
), pp.
887
904
.
20.
Giles
,
M. B.
,
1997
, “
Stability Analysis of Numerical Interface Conditions in Fluid-Structure Thermal Analysis
,”
Int. J. Numer. Methods Fluids
,
25
(
4
), pp.
421
436
.
You do not currently have access to this content.