This article discusses the development, application, and validation of an optimization method for the impellers of axial fans. The method is supposed to be quick, accurate, and applicable to optimization at an extensive range of design points (DPs). Optimality here means highest possible total-to-static efficiency for a given design point and is obtained by an evolutionary algorithm in which the target function is evaluated by computational fluid dynamics (CFD)-trained artificial neural networks (ANN) of the multilayer perceptron (MLP) type. The MLPs were trained with steady-state CFD (i.e., Reynolds-averaged Navier–Stokes (RANS)) results of approximately 14,000 distinct impellers. After this considerable one-time effort to generate the CFD dataset, each new fan optimization can be performed within a few minutes. It is shown in this article that the MLPs are reliably applicable to all typical design points of axial fans according to Cordier's diagram. Moreover, an extension of the design space toward the classic realm of mixed-flow or even centrifugal fans is observed. It is also shown that the optimization method successfully handles geometrical and operational constraints proving the high degree of universality of the method. Another focus of this article is on the application of the newly developed optimization method to numerous design points. This yields two major findings: the estimation of maximum achievable total-to-static efficiency as a function of the targeted design point (with and without geometrical constraints) as well as a quantification of the improvement over fans designed with classic methods. Both investigations are supported by flow field analyses to aerodynamically explain the findings. Experimental validation of the method was performed with a total of nine prototypes. The positive correlation between MLP, CFD, and experiment successfully validates the methodology.

References

1.
European Commission
,
2011
, “
Commission Regulation (EU) No. 327/2011
,”
Off. J. Eur. Union
,
L90
, pp.
8
21
.http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:090:0008:0021:EN:PDF
2.
Lee
,
Y.-T.
,
Ahuja
,
V.
,
Hosangadi
,
A.
,
Slipper
,
M. E.
,
Mulvihill
,
L. P.
,
Birkbeck
,
R.
, and
Coleman
,
R.
,
2011
, “
Impeller Design of a Centrifugal Fan With Blade Optimization
,”
Int. J. Rotating Mach.
,
2011
, p.
537824
.
3.
Thévenin
,
D.
, and
Janiga
,
G.
,
2008
,
Optimization and Computational Fluid Dynamics
,
Springer-Verlag
,
Berlin
.
4.
Ratter
,
H.
,
Çağlar
,
Ş.
, and
Gabi
,
M.
,
2014
, “
A Coupled Blade Adjustment and Response Surface Method for the Optimization of Radial Fans Without Housing
,”
ASME
Paper No. GT2014-25564.
5.
Zhang
,
Z.
,
Demory
,
B.
,
Henner
,
M.
,
Ferrand
,
P.
,
Gillot
,
F.
,
Beddadi
,
Y.
,
Franquelin
,
F.
, and
Marion
,
V.
,
2014
, “
Space Infill Study of Kriging Meta-Model for Multi-Objective Optimization of an Engine Cooling Fan
,”
ASME
Paper No. GT2014-25281.
6.
Demeulenaere
,
A.
,
Ligout
,
A.
,
Dijkers
,
R.
,
Purwanto
,
A.
,
Hirsch
,
C.
, and
Visser
,
F.
,
2005
, “
Design and Optimization of an Industrial Pump: Application of Genetic Algorithms and Neural Networks
,”
ASME
Paper No. FEDSM2005-77487.
7.
Hildebrandt
,
T.
,
Starke
,
A.
, and
Ruck
,
G.
,
2010
, “
Leistung- und Effizienzsteigerung einer Diagonallüfterstufe: Von der CFD basierten Optimierung mit FINE™/Turbo bis zur Serieneinführung
,” VDI Ventilatoren 2010, Braunschweig, Germany.
8.
Pierret
,
S.
, and
Hirsch
,
C.
,
2002
, “
An Integrated Optimization System for Turbomachinery Blade Shape Design
,” RTO AVT Symposium on Reduction of Military Vehicle Acquisition Time and Cost Through Advanced Modelling and Virtual Simulation, Paris, France, Paper No.
ADP014160
.http://www.dtic.mil/dtic/tr/fulltext/u2/p014160.pdf
9.
Cordier
,
O.
,
1953
, “
Ähnlichkeitsbedingungen für Strömungsmaschinen
,”
BWK
,
5
(
10
), pp.
337
340
.
10.
Dixon
,
S. L.
, and
Hall
,
C. A.
,
2010
,
Fluid Mechanics and Thermodynamics of Turbomachinery
, 6th ed.,
Butterworth Heinemann
,
Oxford, UK
.
11.
Carolus
,
T.
, and
Starzmann
,
R.
,
2011
, “
An Aerodynamic Design Methodology for Low Pressure Axial Fans With Integrated Airfoil Polar Prediction
,”
ASME
Paper No. GT2011-45243.
12.
Bamberger
,
K.
, and
Carolus
,
T.
,
2014
, “
Performance Prediction of Axial Fans by CFD-Trained Meta-Models
,”
ASME
Paper No. GT2014-26877.
13.
Eck
,
B.
,
2003
,
Ventilatoren
,
Springer-Verlag
,
Berlin
.
14.
Pelz
,
P.
, and
Stonjek
,
S.
,
2013
, “
The Influence of Reynolds Number and Roughness on the Efficiency of Axial and Centrifugal Fans: A Physically Based Scaling Method
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
052601
.
15.
Montgomery
,
D. C.
,
2005
,
Design and Analysis of Experiment
,
Wiley
,
Hoboken, NJ
.
16.
Santner
,
T.
,
Williams
,
B.
, and
Notz
,
W.
,
2003
,
The Design and Analysis of Computer Experiments
,
Springer Science & Business Media
,
New York
.
17.
Bratley
,
P.
, and
Fox
,
B. L.
,
1988
, “
Algorithm 659 Implementing Sobol's Quasirandom Sequence Generator
,”
ACM Trans. Math. Software
,
14
(
1
), pp.
88
100
.
18.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
19.
Richardson
,
L. F.
,
1910
, “
The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonry Dam
,”
Philos. Trans. R. Soc., Ser. A
,
210
, pp.
307
357
.
20.
Richardson
,
L. F.
,
1927
, “
The Deferred Approach to the Limit
,”
Philos. Trans. R. Soc., Ser. A
,
226
, pp.
229
361
.
21.
Bamberger
,
K.
,
2015
, “
Aerodynamic Optimization of Low-Pressure Axial Fans
,” Ph.D. thesis, University of Siegen, Siegen, Germany.
22.
Nelles
,
O.
,
2001
,
Nonlinear System Identification
,
Springer-Verlag
,
Berlin
.
23.
Marquardt
,
D. W.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
SIAM J. Appl. Math.
,
11
(
2
), pp.
431
441
.
24.
Fonseca
,
C. M.
, and
Fleming
,
P. J.
,
1993
, “
Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization
,”
Fifth International Conference on Genetic Algorithms
, San Mateo, CA, July 17–21, pp. 416–423.https://pdfs.semanticscholar.org/11ec/6378801e6f8a800260b565439ff1cd9c5f5a.pdf
25.
ISO/TC 117,
2010
, “
Industrial Fans—Performance Testing Using Standardized Airways
,” Beuth Verlag, Berlin, Standard No.
EN ISO 5801:2007
.https://www.iso.org/standard/39542.html
26.
Carolus
,
T.
,
Zhu
,
T.
, and
Sturm
,
M.
,
2015
, “
A Low Pressure Axial Fan for Benchmarking Prediction Methods for Aerodynamic Performance and Sound
,”
Noise Control Eng. J.
,
63
(6), pp. 537–545.http://connection.ebscohost.com/c/articles/112187775/low-pressure-axial-fan-benchmarking-prediction-methods-aerodynamic-performance-sound
27.
Hensel
,
K.
,
1993
, “
Konzeption eines Ventilatorprüfstandes nach DIN 24163
,” Diploma thesis, University of Siegen, Siegen, Germany.
28.
Winkler
,
J.
,
2011
, “
Investigation of Trailing-Edge-Blowing on Airfoils for Turbomachinery Broadband Noise Reduction
,”
Ph.D. thesis
, University of Siegen, Siegen, Germany.http://www.shaker.eu/en/content/catalogue/index.asp?lang=en&ID=8&ISBN=978-3-8440-0350-5
29.
Starzmann
,
R.
,
2012
, “
Aero-Acoustic Analysis of Wells Turbines for Ocean Wave Energy Conversion
,” Ph.D. thesis, University of Siegen, Siegen, Germany.
30.
Bamberger
,
K.
, and
Carolus
,
T.
,
2013
, “
Impact of Different Aerodynamic Optimization Strategies on the Sound Emitted by Axial Fans
,”
AIAA
Paper No. 2013-2241.
31.
Carolus
,
T.
,
2012
,
Ventilatoren—Aerodynamischer Entwurf, Schallvorhersage, Konstruktion
,
Springer Vieweg
,
Wiesbaden, Germany
.
32.
Pelz
,
P. F.
, and
Metzler
,
M.
,
2012
, “
Optimization of Power-Specific Investment Costs for Small Hydropower
,”
17th International Seminar on Hydropower Plants
, Vienna, Austria, Nov. 21–23.http://wl.fst.tu-darmstadt.de/wl/publications/paper_120925_Optimization_of_Power_specific_Investment_costs_for_small_hydro_power_Pelz_metzler.pdf
33.
Bamberger
,
K.
, and
Carolus
,
T.
,
2015
, “
Design Guidelines for Low Pressure Axial Fans Based on CFD-Trained Meta-Models
,”
11th European Turbomachinery Conference
(
ETC
), Madrid, Spain, Mar. 23–27, Paper No. ETC2015-175.http://www.euroturbo.eu/publications/proceedings-papers/etc2015-175/
34.
Members of the Staff of Lewis Research Center
,
1965
, “
Aerodynamic Design of Axial Flow Compressors
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-SP-36
.https://ntrs.nasa.gov/search.jsp?R=19650013744
35.
Beiler
,
M.
,
1996
, “
Untersuchung der dreidimensionalen Strömung durch Axialventilatoren mit gekrümmten Schaufeln
,” Ph.D. thesis, University of Siegen, Siegen, Germany.
36.
Bamberger
,
K.
,
Belz
,
J.
,
Carolus
,
T.
, and
Nelles
,
O.
,
2016
, “
Aerodynamic Optimization of Centrifugal Fans Using CFD-Trained Meta-Models
,”
International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
(
ISROMAC
), Honolulu, HI, Apr. 10–15.https://www.mb.uni-siegen.de/iftsm/forschung/veroeffentlichungen_pdf/160_2016.pdf
You do not currently have access to this content.