Computational fluid dynamics (CFD) has become a critical tool in the design of aero-engines. Increasing demand for higher efficiency, performance, and reduced emissions of noise and pollutants has focused attention on secondary flows, small scale internal flows, and flow interactions. In conjunction with low order correlations and experimental data, RANS (Reynolds-averaged Navier–Stokes) modeling has been used effectively for some time, particularly at high Reynolds numbers and at design conditions. However, the range of flows throughout an engine is vast, with most, in reality being inherently unsteady. There are many cases where RANS can perform poorly, particularly in zones characterized by strong streamline curvature, separation, transition, relaminarization, and heat transfer. The reliable use of RANS has also been limited by its strong dependence on turbulence model choice and related ad-hoc corrections. For complex flows, large-eddy simulation (LES) methods provide reliable solutions, largely independent of turbulence model choice, and at a relatively low cost for particular flows. LES can now be used to provide in depth knowledge of flow physics, for example, in areas such as transition and real wall roughness effects. This can be used to inform RANS and lower order modeling (LOM). For some flows, LES can now even be used for design. Existing literature is used to show the potential of LES for a range of flows in different zones of the engine. Based on flow taxonomy, best practices including RANS/LES zonalization, meshing requirements, and turbulent inflow conditions are introduced, leading to the proposal of a tentative expert system for industrial use. In this way, LES becomes a well controlled tool, suitable for design use and reduces the burden on the end user. The problem sizes tackled however have lagged behind potential computing power, hence future LES use at scale requires substantial progress in several key areas. Current and future solver technologies are thus examined and the potential current and future use of LES is considered.

References

1.
Vogt
,
D. M.
, and
Fransson
,
T. H.
,
2002
, “
A New Turbine Cascade for Aeromechanical Testing
,”
16th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines
, Cambridge, UK, Sept. 23–24.
2.
Pullan
,
G.
,
Young
,
A. M.
, and
Day
, I
. J.
,
2012
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME
Paper No. GT2012-68707.10.1115/GT2012-68707
3.
Tyacke
,
J.
, and
Tucker
,
P.
,
2012
, “
LES of Heat Transfer in Electronics
,”
Appl. Math. Modell.
,
36
(
7
), pp.
3112
3133
.10.1016/j.apm.2011.09.072
4.
Tucker
,
P. G.
,
2011
, “
Computation of Unsteady Turbomachinery Flows: Part 1—Progress and Challenges
,”
Prog. Aerosp. Sci.
,
47
(
7
), pp.
522
545
.10.1016/j.paerosci.2011.06.004
5.
Denton
,
J. D.
, and
Dawes
,
W. N.
,
1998
, “
Computational Fluid Dynamics for Turbomachinery Design
,”
Proc. Inst. Mech. Eng., Part C
,
213
(
2
), pp.
107
124
.10.1243/0954406991522211
6.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
7.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulent Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.10.1017/S0022112075001814
8.
Rumsey
,
C. L.
,
Pettersson-Reif
,
B. A.
, and
Gatski
,
T. B.
,
2006
, “
Arbitrary Steady-State Solutions With the k-Epsilon Model
,”
AIAA J.
,
44
(
7
), pp.
1586
1592
.10.2514/1.18015
9.
Tucker
,
P.
,
2013
, “
Trends in Turbomachinery Turbulence Treatments
,”
Prog. Aerosp. Sci.
,
63
, pp.
1
32
.10.1016/j.paerosci.2013.06.001
10.
Spalart
,
P. R.
,
Jou
,
W.-H.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
First AFOSR International Conference on DNS/LES in Advances in DNS/LES
, Ruston, LA, Aug. 4–8, pp.
137
147
.
11.
Spalart
,
P. R.
,
2009
, “
Detached-Eddy Simulation
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
181
202
.10.1146/annurev.fluid.010908.165130
12.
Tucker
,
P.
,
Eastwood
,
S.
,
Klostermeier
,
C.
,
Jefferson-Loveday
,
R.
,
Tyacke
,
J.
, and
Liu
,
Y.
,
2010
, “
Hybrid LES Approach for Practical Turbomachinery Flows: Part 1—Hierarchy and Example Simulations
,”
ASME
Paper No. GT2010-23431.10.1115/GT2010-23431
13.
Tucker
,
P.
,
Eastwood
,
S.
,
Klostermeier
,
C.
,
Xia
,
H.
,
Ray
,
P.
,
Tyacke
,
J.
, and
Dawes
,
W.
,
2010
, “
Hybrid LES Approach for Practical Turbomachinery Flows: Part 2—Further Applications
,”
ASME
Paper No. GT2010-23807.10.1115/GT2010-23807
14.
You
,
D.
,
Wang
,
M.
,
Mittal
,
R.
, and
Moin
,
P.
,
2003
, “
Study of Rotor Tip-Clearance Flow Using Large-Eddy Simulation
,” 41st Aerospace Science Meeting and Exhibit, Reno, NV, Jan. 6–9,
AIAA
Paper No. 2003–838.10.2514/6.2003-838
15.
Tyacke
,
J.
,
Tucker
,
P. G.
,
Jefferson-Loveday
,
R.
,
Rao Vadlamani
,
N.
,
Watson
,
R.
, and
Naqavi
,
I.
,
2013
, “
LES for Turbines: Methodologies, Cost and Future Outlooks
,”
ASME
Paper No. GT2013-94416.10.1115/GT2013-94416
16.
Chapman
,
D.
,
Hans
,
M.
, and
Pirtle
,
M. W.
,
1975
, “
Computers vs. Wind Tunnels for Aerodynamic Flow Simulations
,”
Astronaut. Aeronaut.
,
13
(
4
), pp.
12
35
.10.2514/3.49622
17.
Qiu
,
X.-W.
,
Anderson
,
M.
, and
Japikse
,
D.
,
2010
, “
An Integrated Design System for Turbomachinery
,”
J. Hydrodyn., Ser. B
,
22
(
5
), pp.
358
365
.10.1016/S1001-6058(09)60219-5
18.
Rubio
,
G.
,
Valero
,
E.
, and
Lanzan
,
S.
,
2012
, “
Computational Fluid Dynamics Expert System Using Artificial Neural Networks
,”
Int. J. Eng. Appl. Sci.
,
6
, pp.
40
44
.
19.
Knight
,
B.
, and
Petridis
,
M.
,
1992
, “
FLOWES: An Intelligent Computational Fluid Dynamics System
,”
Eng. Appl. Artif. Intell.
,
5
(
1
), pp.
51
58
.10.1016/0952-1976(92)90097-4
20.
Andrews
,
A. E.
,
1988
, “
Progress and Challenges in the Application of Artificial Intelligence to Computational Fluid Dynamics
,”
AIAA J.
,
26
(
1
), pp.
40
46
.10.2514/3.9848
21.
Collado Morata
,
E.
,
Gourdain
,
N.
,
Duchaine
,
F.
, and
Gicquel
,
L.
,
2012
, “
Effects of Free-Stream Turbulence on High Pressure Turbine Blade Heat Transfer Predicted by Structured and Unstructured LES
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5754
5768
.10.1016/j.ijheatmasstransfer.2012.05.072
22.
Sagaut
,
P.
,
Garnier
,
E.
,
Tromeur
,
E.
,
Larcheveque
,
L.
, and
Labourasse
,
E.
,
2004
, “
Turbulent Inflow Conditions for Large-Eddy Simulation of Compressible Wall-Bounded Flows
,”
AIAA J.
,
42
(
3
), pp.
469
477
.10.2514/1.3461
23.
Jewkes
,
J.
,
2008
, “
An Improved Turbulent Boundary Layer Inflow Condition, Applied to the Simulation of Jets in Cross-Flow
,” Ph.D. thesis, University of Warwick, Warwick, UK.
24.
Keating
,
A.
,
Piomelli
,
U.
,
Balaras
,
E.
, and
Kaltenbach
,
H.-J.
,
2004
, “
A Priori and A Posteriori Tests of Inflow Conditions for Large-Eddy Simulation
,”
Phys. Fluids
,
16
(
12
), pp.
4696
4712
.10.1063/1.1811672
25.
Tabor
,
G.
, and
Baba-Ahmadi
,
M.
,
2010
, “
Inlet Conditions for Large Eddy Simulation: A Review
,”
Comput. Fluids
,
39
(
4
), pp.
553
567
.10.1016/j.compfluid.2009.10.007
26.
Lund
,
T. S.
,
Wu
,
X.
, and
Squires
,
K. D.
,
1998
, “
Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations
,”
J. Comput. Phys.
,
140
(
2
), pp.
233
258
.10.1006/jcph.1998.5882
27.
Schluter
,
J. U.
,
Wu
,
X.
,
Kim
,
S.
,
Shankaran
,
S.
,
Alonso
,
J. J.
, and
Pitsch
,
H.
,
2005
, “
A Framework for Coupling Reynolds-Averaged With Large-Eddy Simulations for Gas Turbine Applications
,”
ASME J. Fluids Eng.
,
127
(
4
), pp.
806
815
.10.1115/1.1994877
28.
Wu
,
X.
,
2010
, “
Establishing the Generality of Three Phenomena Using a Boundary Layer With Free-Stream Passing Wakes
,”
J. Fluid Mech.
,
664
, pp.
193
219
.10.1017/S0022112010004027
29.
Rao Vadlamani
,
N.
,
2013
, “
High Fidelity Large Eddy Simulation of Turbines: Current Status and Future Outlook
,” Ph.D. thesis, University of Cambridge, Cambridge, UK.
30.
Mathey
,
F.
,
Cokjlat
,
D.
,
Bertoglio
,
J. P.
, and
Sergent
,
E.
,
2003
, “
Specification of LES Inlet Boundary Condition Using Vortex Method
,”
4th International Symposium on Turbulence
, Heat and Mass Transfer (THMT 4), Antalya, Turkey, Oct. 12–17.
31.
Kraichnan
,
R. H.
,
1970
, “
Diffusion by a Random Velocity Field
,”
Phys. Fluids
,
13
(
1
), pp.
22
31
.10.1063/1.1692799
32.
Labourasse
,
E.
, and
Sagaut
,
P.
,
2002
, “
Reconstruction of Turbulent Fluctuations Using a Hybrid RANS/LES Approach
,”
J. Comput. Phys.
,
182
(
1
), pp.
301
336
.10.1006/jcph.2002.7169
33.
Laraufie
,
R.
,
Deck
,
S.
, and
Sagaut
,
P.
,
2011
, “
A Dynamic Forcing Method for Unsteady Turbulent Inflow Conditions
,”
J. Comput. Phys.
,
230
(
23
), pp.
8647
8663
.10.1016/j.jcp.2011.08.012
34.
O'Mahoney
,
T. S. D.
,
2011
, “
Large-Eddy Simulation of Turbine Rim Seals
,” Ph.D. thesis, Surrey University, Surrey, UK.
35.
Klein
,
M.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2003
, “
A Digital Filter Based Generation of Inflow Data for Spatially Developing Direct Numerical or Large Eddy Simulations
,”
J. Comput. Phys.
,
186
(
2
), pp.
652
665
.10.1016/S0021-9991(03)00090-1
36.
Jarrin
,
N.
,
Prosser
,
R.
,
Uribe
,
J.-C.
,
Benhamadouche
,
S.
, and
Laurence
,
D.
,
2009
, “
Reconstruction of Turbulent Fluctuations for Hybrid RANS/LES Simulations Using a Synthetic-Eddy Method
,”
Int. J. Heat Fluid Flow
,
30
(
3
), pp.
435
442
.10.1016/j.ijheatfluidflow.2009.02.016
37.
Perret
,
L.
,
Delville
,
J.
,
Manceau
,
R.
, and
Bonnet
,
J.-P.
,
2008
, “
Turbulent Inflow Conditions for Large-Eddy Simulation Based on Low-Order Empirical Model
,”
Phys. Fluids
,
20
(
7
), p.
075107
.10.1063/1.2957019
38.
Druault
,
P.
,
Lardeau
,
S.
,
Bonnet
,
J.-P.
,
Coiffet
,
F.
,
Delville
,
J.
,
Lamballais
,
E.
,
Largeau
,
J.-F.
, and
Perret
,
L.
,
2004
, “
Generation of Three-Dimensional Turbulent Inlet Conditions for Large-Eddy Simulation
,”
AIAA J.
,
42
(
3
), pp.
447
456
.10.2514/1.3946
39.
Eastwood
,
S.
,
2010
, “
Hybrid LES-RANS of Complex Geometry Jets
,” Ph.D. thesis, University of Cambridge, Cambridge, UK.
40.
Batten
,
P.
,
Goldberg
,
U.
, and
Chakravarthy
,
S.
,
2004
, “
Interfacing Statistical Turbulence Closures With Large-Eddy Simulation
,”
AIAA J.
,
42
(
3
), pp.
485
492
.10.2514/1.3496
41.
Xiao
,
F.
,
Dianat
,
M.
, and
Mcguirk
,
J. J.
,
2010
, “
A Recycling/Rescaling Method for LES Inlet Condition Generation
,” 8th International ERCOFTAC Symposium (ETMM8), Marseille, France, June 9–11, Vol.
2
, No. 1992, pp.
510
515
.
42.
Wang
,
P. C.
, and
Mcguirk
,
J. J.
,
2013
, “
Large Eddy Simulation of Supersonic Jet Plumes From Rectangular Con-Di Nozzles
,”
Int. J. Heat Fluid Flow
,
43
(
1
), pp.
62
73
.10.1016/j.ijheatfluidflow.2013.06.002
43.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2003
, “
Towards the Prediction of Noise From Jet Engines
,”
Int. J. Heat Fluid Flow
,
24
(4), pp.
551
561
.10.1016/S0142-727X(03)00049-3
44.
Tucker
,
P. G.
,
2013
,
Unsteady Computational Fluid Dynamics in Aeronautics
,
Springer
,
Dordrecht, The Netherlands
.
45.
Hu
,
F. Q.
,
2001
, “
A Stable, Perfectly Matched Layer for Linearized Euler Equations in Unsplit Physical Variables
,”
J. Comput. Phys.
,
173
(
2
), pp.
455
480
.10.1006/jcph.2001.6887
46.
Giles
,
M. B.
,
1990
, “
Nonreflecting Boundary Conditions for Euler Equation Calculations
,”
AIAA J.
,
28
(
12
), pp.
2050
2058
.10.2514/3.10521
47.
Pauley
,
L. L.
,
Moin
,
P.
, and
Reynolds
,
W. C.
,
1990
, “
The Structure of Two-Dimensional Separation
,”
J. Fluid Mech.
,
220
(
397–411
), p.
C864
.10.1017/S0022112090003317
48.
Ashcroft
,
G.
, and
Zhang
,
X.
,
2001
, “
A Computational Investigation of the Noise Radiated by Flow-Induced Cavity Oscillations
,” 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 8–11,
AIAA
Paper No. 2001-0512.10.2514/6.2001-512
49.
Ffowcs Williams
,
J. E.
, and
Hawkings
,
D. L.
,
1969
, “
Sound Generation by Turbulence and Surfaces in Arbitrary Motion
,”
Philos. Trans. R. Soc., A
,
264
(
1151
), pp.
321
342
.10.1098/rsta.1969.0031
50.
Tam
,
C. K. W.
,
1998
, “
Advances in Numerical Boundary Conditions for Computational Aeroacoustics
,”
J. Comput. Acoust.
,
6
(
4
), pp.
377
402
.10.1142/S0218396X98000259
51.
Poinsot
,
T. J.
, and
K
,
L. S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
52.
He
,
L.
,
2013
, “
Fourier Spectral Modelling for Multi-Scale Aero-Thermal Analysis
,”
Int. J. Comput. Fluid Dyn.
,
27
(
2
), pp.
118
129
.10.1080/10618562.2013.763935
53.
Pierce
,
C.
, and
Moin
,
P.
,
1998
, “
Method for Generating Equilibrium Swirling Inflow Conditions
,”
AIAA J.
,
36
(
7
), pp.
6
8
.10.2514/2.518
54.
Schluter
,
J. U.
,
Pitsch
,
H.
, and
Moin
,
P.
,
2005
, “
Outflow Conditions for Integrated Large Eddy Simulation/Reynolds-Averaged Navier-Stokes Simulations
,”
AIAA J.
,
43
(
1
), pp.
156
164
.10.2514/1.11007
55.
Schluter
,
J. U.
,
Pitsch
,
H.
, and
Moin
,
P.
,
2004
, “
Large Eddy Simulation Inflow Conditions for Coupling With Reynolds-Averaged Flow Solvers
,”
AIAA J.
,
42
(
3
), pp.
478
484
.10.2514/1.3488
56.
Patil
,
S. S.
,
2011
, “
Large Eddy Simulations of High Reynolds Number Complex Flows With Synthetic Inlet Turbulence
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
57.
Medic
,
G.
,
Kalitzin
,
G.
,
You
,
D.
,
Herrmann
,
M.
,
Ham
,
F.
,
ven der Weide
,
E.
,
Pitsch
,
H.
, and
Alonso
,
J.
,
2006
, “
Integrated RANS/LES Computations of Turbulent Flow Through a Turbofan Jet Engine
,”
Center for Turbulence Research Annual Research Briefs
, Stanford University, Stanford, CA, pp.
275
285
.
58.
Fröhlich
,
J.
, and
von Terzi
,
D.
,
2008
, “
Hybrid LES/RANS Methods for the Simulation of Turbulent Flows
,”
Prog. Aerosp. Sci.
,
44
(
5
), pp.
349
377
.10.1016/j.paerosci.2008.05.001
59.
He
,
S.
,
Ariyaratne
,
C.
, and
Vardy
,
A. E.
,
2011
, “
Wall Shear Stress in Accelerating Turbulent Pipe Flow
,”
J. Fluid Mech.
,
685
, pp.
440
460
.10.1017/jfm.2011.328
60.
Giles
,
M. B.
,
1988
, “
Calculation of Unsteady Wake/Rotor Interaction
,”
J. Propul. Power
,
4
(
4
), pp.
356
362
.10.2514/3.23074
61.
Giles
,
M.
,
1991
, “
UNSFLO: A Numerical Method for the Calculation of Unsteady Flow in Turbomachinery
,”
Massachussetts Institute of Technology Gas Turbine Laboratory
, Cambridge, MA, GTL Technical Report No. 205.
62.
Connell
,
M.
,
Braaten
,
L.
,
Zori
,
R.
,
Steed
,
B.
,
Hutchinson
,
B.
, and
Cox
,
G.
,
2011
, “
A Comparison of Advanced Numerical Techniques to Model Transient Flow in Turbomachinery Blade Rows
,”
ASME
Paper No. GT2011-45820.10.1115/GT2011-45820
63.
Grinstein
,
F., F.
,
Fureby
,
C.
, and
DeVore
,
C., R.
,
2005
, “
On MILES Based on Flux-Limiting Algorithms
,”
Int. J. Numer. Methods Fluids
,
47
(
10–11
), pp.
1043
1051
.10.1002/fld.925
64.
Orzag
,
S. A.
,
1971
, “
Accurate Solution of the Orr-Sommerfeld Stability Equation
,”
J. Fluid Mech.
,
50
(
4
), pp.
689
703
.10.1017/S0022112071002842
65.
Roe
,
P.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.10.1016/0021-9991(81)90128-5
66.
Debonis
,
J. R.
, and
Scott
,
J. N.
,
2002
, “
Study of the Error and Efficiency of Numerical Schemes for Computational Aeroacoustics
,”
AIAA J.
,
40
(
2
), pp.
227
234
.10.2514/2.1664
67.
Jameson
,
A.
,
2007
, “
Formulation of Kinetic Energy Preserving Conservative Schemes for Gas Dynamics and Direct Numerical Simulation of One-Dimensional Viscous Compressible Flow in a Shock Tube Using Entropy and Kinetic Energy Preserving Schemes
,”
J. Sci. Comput.
,
34
(
2
), pp.
188
208
.10.1007/s10915-007-9172-6
68.
Reynolds-Barredo
,
J.
,
Newman
,
D.
,
Sanchez
,
R.
,
Samaddar
,
D.
,
Berry
,
L.
, and
Elwasif
,
W.
,
2012
, “
Mechanisms for the Convergence of Time-Parallelized, Parareal Turbulent Plasma Simulations
,”
J. Comput. Phys.
,
231
(
23
), pp.
7851
7867
.10.1016/j.jcp.2012.07.028
69.
Chapman
,
D.
,
1979
, “
Computational Aerodynamics, Development and Outlook
,”
AIAA J.
,
17
(
12
), pp.
1293
1313
.10.2514/3.61311
70.
Choi
,
H.
, and
Moin
,
P.
,
2012
, “
Grid-Point Requirements for Large Eddy Simulation: Chapman's Estimates Revisited
,”
Phys. Fluids
,
24
(
1
), p.
011702
.10.1063/1.3676783
71.
Peskin
,
C. S.
,
1972
, “
Flow Patterns Around Heart Valves: A Numerical Method
,”
J. Comput. Phys.
,
10
(
2
), pp.
252
271
.10.1016/0021-9991(72)90065-4
72.
Peskin
,
C. S.
,
2002
, “
The Immersed Boundary Method
,”
Acta Numer.
,
11
, pp.
479
517
.10.1017/S0962492902000077
73.
Addad
,
Y.
,
Gaitonde
,
U.
,
Laurence
,
D.
, and
Rolfo
,
S.
,
2008
, “
Optimal Unstructured Meshing for Large Eddy Simulations
,”
Qual. Reliab. Large-Eddy Simul.
,
12
(
1
), pp.
93
103
.10.1007/978-1-4020-8578-9
74.
Park
,
M. A.
,
2004
, “
Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation
,”
AIAA J.
,
42
(
9
), pp.
1854
1862
.10.2514/1.10051
75.
Larsson
,
J.
, and
Wang
,
Q.
,
2014
, “
The Prospect of Using LES and DES in Engineering Design, and the Research Required to Get There
,”
Philos. Trans. R. Soc., A
,
372
(
2022
), p.
20130329
.10.1098/rsta.2013.0329
76.
Gargallo-Peir
,
A.
,
Roca
,
X.
,
Peraire
,
J.
, and
Sarrate
,
J.
,
2013
, “
Defining Quality Measures for Validation and Generation of High-Order Tetrahedral Meshes
,”
Proceedings of the 22nd International Meshing Roundtable
, Orlando, FL, Oct. 13–16, Springer International Publishing, Cham, Switzerland, pp.
109
126
.10.1007/978-3-319-02335-9_7
77.
Löhner
,
R.
, and
Baum
,
J. D.
,
2013
, “
Handling Tens of Thousands of Cores With Industrial/Legacy Codes: Approaches, Implementation and Timings
,”
Comput. Fluids
,
85
, pp.
53
62
.10.1016/j.compfluid.2012.09.030
78.
Giles
,
M.
, and
Reguly
,
I.
,
2014
, “
Trends in High Performance Computing for Engineering Calculations
,”
Philos. Trans. R. Soc., A
,
372
(
2022
), p.
20130319
.10.1098/rsta.2013.0319
79.
Kennedy
,
A.
, and
Parsons
,
M.
,
2013
, “
ARCHER: A New UK Service for Academic Research
,”
EPCC News, The University of Edinburgh, Edinburgh, Scotland.
80.
Kogge
,
P.
,
Bergman
,
K.
,
Borkar
,
S.
,
Campbell
,
D.
,
Carlson
,
W.
,
Dally
,
W.
,
Denneau
,
M.
,
Franzon
,
P.
,
Harrod
,
W.
,
Hil
,
K.
,
Hiller
,
J.
,
Karp
,
S.
,
Keckler
,
S.
,
Klein
,
D.
,
Lucas
,
R.
,
Richards
,
M.
,
Scarpelli
,
A.
,
Scott
,
S.
,
Snavely
,
A.
,
Sterling
,
T.
,
Williams
,
R. S.
, and
Yelick
,
K.
,
2008
, “
ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems
,” Defense Advanced Research Projects Agency (DARPA), Information Processing Techniques Office (IPTO), Arlington, VA, Technical Report No. 15.
81.
Shacham
,
A.
, and
Bergman
,
K.
,
2007
, “
Building Ultralow-Latency Interconnection Networks Using Photonic Integration
,”
IEEE Micro
,
27
(
4
), pp.
6
20
.10.1109/MM.2007.64
82.
Tucker
,
P.
,
2011
, “
Computation of Unsteady Turbomachinery Flows: Part 2—LES and Hybrids
,”
Prog. Aerosp. Sci.
,
47
(
7
), pp.
546
569
.10.1016/j.paerosci.2011.07.002
83.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University
, Press, New York.
84.
Gamard
,
S.
, and
George
,
W.
,
1999
, “
Reynolds Number Dependence of Energy Spectra in the Overlap Region of Isotropic Turbulence
,”
Flow, Turbul. Combust.
,
63
(
1–4
), pp.
443
477
.10.1023/A:1009988321057
85.
Ahn
,
J.
,
Choi
,
H.
, and
Lee
,
J. S.
,
2005
, “
Large Eddy Simulation of Flow and Heat Transfer in a Channel Roughened by Square or Semicircle Ribs
,”
ASME J. Turbomach.
,
127
(
2
), pp.
263
269
.10.1115/1.1811098
86.
Viswanathan
,
A. K.
, and
Tafti
,
D. K.
,
2006
, “
Detached Eddy Simulation of Turbulent Flow and Heat Transfer in a Two-Pass Internal Cooling Duct
,”
Int. J. Heat Fluid Flow
,
27
(
1
), pp.
1
20
.10.1016/j.ijheatfluidflow.2005.07.002
87.
Mendez
,
S.
,
Shoeybi
,
M.
,
Lele
,
S. K.
, and
Moin
,
P.
,
2013
, “
On the Use of the Ffowcs Williams-Hawkings Equation to Predict Far-Field Jet Noise From Large-Eddy Simulations
,”
Int. J. Aeroacoust.
,
12
(
1–2
), pp.
1
20
.10.1260/1475-472X.12.1-2.1
88.
Piomelli
,
U.
,
Cabot
,
W. H.
,
Moin
,
P.
, and
Lee
,
S.
,
1991
, “
Subgrid-Scale Backscatter in Turbulent and Transitional Flows
,”
Phys. Fluids A
,
3
(
7
), pp.
1766
1771
.10.1063/1.857956
89.
Schlatter
,
P.
,
Stolz
,
S.
, and
Kleiser
,
L.
,
2004
, “
LES of Transitional Flows Using the Approximate Deconvolution Model
,”
Int. J. Heat Fluid Flow
,
25
(
3
), pp.
549
558
.10.1016/j.ijheatfluidflow.2004.02.020
90.
McMullan
,
W.
, and
Page
,
G.
,
2012
, “
Towards Large Eddy Simulation of Gas Turbine Compressors
,”
Prog. Aerosp. Sci.
,
52
, pp.
30
47
.10.1016/j.paerosci.2011.12.002
91.
Jefferson-Loveday
,
R. J.
,
Nagabhushana Rao
,
V.
,
Tyacke
,
J. C.
, and
Tucker
,
P. G.
,
2013
, “
High-Order Detached Eddy Simulation, Zonal LES and URANS of Cavity and Labyrinth Seal Flows
,”
Int. J. Numer. Methods Fluids
,
73
(
9
), pp.
830
846
.10.1002/fld.3826
92.
Deck
,
S.
,
2012
, “
Recent Improvements in the Zonal Detached Eddy Simulation (ZDES) Formulation
,”
Theor. Comput. Fluid Dyn.
,
26
(
6
), pp.
523
550
.10.1007/s00162-011-0240-z
93.
Pitsch
,
H.
,
Desjardins
,
O.
,
Balarac
,
G.
, and
Ihme
,
M.
,
2008
, “
Large-Eddy Simulation of Turbulent Reacting Flows
,”
Prog. Aerosp. Sci.
,
44
(
6
), pp.
466
478
.10.1016/j.paerosci.2008.06.005
94.
Georgiadis
,
N. J.
,
Rizzetta
,
D. P.
, and
Fureby
,
C.
,
2009
, “
Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research
,”
AIAA J.
,
48
(
8
), pp.
1772
1784
.10.2514/1.J050232
95.
You
,
D.
,
Mittal
,
R.
,
Wang
,
M.
, and
Moin
,
P.
,
2004
, “
Computational Methodology for Large-Eddy Simulation of Tip-Clearance Flows
,”
AIAA J.
,
42
(
2
), pp.
271
279
.10.2514/1.2626
96.
Medic
,
G.
,
Joo
,
J.
,
Milanovic
,
I.
, and
Sharma
,
O.
,
2013
, “
Large-Eddy Simulation for Turbine Heat Transfer
,”
ASME
Paper No. GT2013-95841.10.1115/GT2013-95841
97.
Sewall
,
E. A.
, and
Tafti
,
D. K.
,
2008
, “
Large Eddy Simulation of Flow and Heat Transfer in the Developing Flow Region of a Rotating Gas Turbine Blade Internal Cooling Duct With Coriolis and Buoyancy Forces
,”
ASME J. Turbomach.
,
130
(
1
), p.
011005
.10.1115/1.2437779
98.
Mockett
,
C.
,
Knacke
,
T.
, and
Thiele
,
F.
,
2010
, “
Detection of Initial Transient and Estimation of Statistical Error in Time-Resolved Turbulent Flow Data
,”
8th International Symposium on Engineering Turbulence Modelling and Measurements (ETMM8
), Marseille, France, June 9–11.
99.
Jambunathan
,
K.
,
Lai
,
E.
,
Hartle
,
S.
, and
Button
,
B.
,
1991
, “
Development of an Intelligent Front-End for a Computational Fluid Dynamics Package
,”
Artif. Intell. Eng.
,
6
(
1
), pp.
27
35
.10.1016/0954-1810(91)90013-E
100.
Ali
,
Z.
, and
Tucker
,
P. G.
,
2013
, “
Multiblock Structured Mesh Generation for Turbomachinery Flows
,”
Proceedings of the 22nd International Meshing Roundtable
, Orlando, FL, Oct. 13–16,
Springer International Publishing
, Cham, Switzerland, No. 20, pp.
165
182
.
101.
Smith
,
W.
,
2001
, “
A Framework for Control and Observation in Distributed Environments
,” NASA Ames Research Center, Moffett Field, CA, Technical Report No. NAS-01-006.
102.
Nemec
,
M.
,
Aftosmis
,
M. J.
, and
Pulliam
,
T. H.
,
2004
, “
On the Use of Parametric-CAD Systems and Cartesian Methods for Aerodynamic Design
,”
3rd International Conference on Computational Fluid Dynamics
(ICCFD3), Toronto, Canada, July 12–16,
Springer-Verlag
, pp.
699
704
.
103.
Aftosmis
,
M. J.
,
1999
, “
On the Use of CAD-Native Predicates and Geometry in Surface Meshing
,” NASA Ames Research Center, Moffet Field, CA, Technical Report No. NASA/TM-1999-208782.
104.
Tucker
,
P.
,
Goodhand
,
M.
, and
Jefferson-Loveday
,
R.
,
2013
, “
DNS of Real Roughness
,”
UK Turbulence Consortium Workshop
, Southampton, UK, Sept. 9–Oct. 10.
105.
Tyacke
,
J.
,
Jefferson-Loveday
,
R.
, and
Tucker
,
P. G.
,
2013
, “
On the Application of LES to Seal Geometries
,”
Flow, Turbul. Combust.
,
91
(
4
), pp.
827
848
.10.1007/s10494-013-9480-x
106.
Jefferson-Loveday
,
R.
,
Tucker
,
P. G.
,
Northall
,
J. D.
, and
Rao
,
N.
,
2013
, “
Differential Equation Specification of Integral Turbulence Length Scales
,”
ASME J. Turbomach.
,
135
(
3
), p.
031013
.10.1115/1.4007479
You do not currently have access to this content.