Much of the current understanding of tip leakage flow has been derived from detailed cascade studies. Such experiments are inherently approximate since it is difficult to simulate the boundary conditions that are present in a real machine, particularly the secondary flows convecting from the upstream stator row and the relative motion of the casing and blade. The problem is further complicated when considering the high pressure turbine rotors of aero engines, where the high Mach numbers must also be matched in order to correctly model the aerodynamics and heat transfer of the leakage flow. More engine-representative tests can be performed on high-speed rotating turbines, but the experimental resolution achievable in such setups is limited. In order to examine the differences between cascade and engine boundary conditions, this paper presents a numerical investigation into the impact of inlet conditions and relative casing motion (RCM) on the leakage flow of a high-pressure turbine rotor. The baseline calculation uses a simplified inlet condition and no relative endwall motion, in typical cascade fashion. Only minor changes to the leakage flow are induced by introducing either a more realistic inlet condition or RCM. However, when both of these conditions are applied simultaneously, the pattern of leakage flow is significantly altered, with ingestion of flow over much of the early suction surface. The paper explores the physical processes driving the changes, the impact on performance and the implications for future experimental investigations.

References

1.
Bunker
,
R. S.
,
2004
, “
Blade Tip Heat Transfer and Cooling Techniques
,” (VKI Lecture Series), von Karman Institute, Rhode-St-Genese, Belgium, Paper No. 2004-02.
2.
Harvey
,
N. W.
,
2004
, “
Aerothermal Implications of Shroudless and Shrouded Blades
,” Turbine Blade Tip Design and Tip Clearance Treatment (VKI Lecture Series 2004-02), von Karman Institute, Rhode-St-Genese, Belgium.
3.
Moore
,
J.
,
Moore
,
J. G.
,
Henry
,
G. S.
, and
Chaudhry
,
U.
,
1989
, “
Flow and Heat Transfer in Turbine Tip Gaps
,”
ASME J. Turbomach.
,
111
(
3
), pp.
301
309
.10.1115/1.3262269
4.
Wheeler
,
A. P. S.
,
Atkins
,
N. R.
, and
He
,
L.
,
2011
, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME J. Turbomach.
,
133
(
4
), p.
041025
.10.1115/1.4002424
5.
Zhang
,
Q.
, and
He
,
L.
,
2011
, “
Overtip Choking and Its Implications on Turbine Blade-Tip Aerodynamic Performance
,”
J. Propul. Power
,
27
(
5
), pp.
1008
1014
.10.2514/1.B34112
6.
Kingcombe
,
R. C.
,
Smith
,
I. M.
, and
Steeden
,
R. V.
,
1990
, “
Overtip Pressure Measurements in a Cold-Flow Turbine Rig
,”
ASME 35th International Gas Turbine and Aeroengine Congress and Exposition
,
Brussels, Belgium
, June 11–14.
7.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
,
1991
, “
Effects of Simulated Rotation on Tip Leakage in a Plannar Cascade of Turbine Blades (Part 1: Tip Gap Flow)
,”
ASME
Paper No. 91-GT-127.
8.
Yaras
,
M. I.
,
Sjolander
,
S. A.
, and
King
,
R. J.
,
1991
, “
Effects of Simulated Rotation on Tip Leakage in a Plannar Cascade of Turbine Blades (Part II: Downstream Flowfield and Blade Loading)
,”
ASME
Paper No. 91-GT-128.
9.
Tallman
,
J.
, and
Lakshminarayana
,
B.
,
2000
, “
Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics: Part II—Effect of Outer Casing Relative Motion
,”
ASME
Paper No. 2000-GT-0516. 10.1115/2000-GT-0516
10.
O'Dowd
,
D. O.
,
Zhang
,
Q.
,
Usandizaga
,
I.
,
He
,
L.
, and
Ligrani
,
P. M.
,
2010
, “
Transonic Turbine Blade Tip Aero-Thermal Performance With Different Tip Gaps: Part II—Tip Aerodynamic Loss
,”
ASME
Paper No. GT2010-22780. 10.1115/GT2010-22780
11.
Metzger
,
D. E.
,
Dunn
,
M. G.
, and
Hah
,
C.
,
1991
, “
Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
,
113
(
3
), pp.
502
507
.10.1115/1.2927902
12.
Zhang
,
Q.
,
O'Dowd
,
D. O.
,
He
,
L.
,
Oldfield
,
M. L. G.
, and
Ligrani
,
P. M.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps—Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041027
.10.1115/1.4003063
13.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.10.1115/1.3262089
14.
Walsh
,
J. A.
, and
Gregory-Smith
,
D. G.
,
1990
, “
Inlet Skew and the Growth of Secondary Losses and Vorticity in a Turbine Cascade
,”
ASME J. Turbomach.
,
112
(
4
), pp.
633
642
.10.1115/1.2927704
15.
Coull
,
J. D.
,
Atkins
,
N. R.
, and
Hodson
,
H. P.
,
2013
, “
Winglets for Improved Aerothermal Performance of High Pressure Turbines
,”
ASME
Paper No. GT2013-94425. 10.1115/GT2013-94425
16.
Atkins
,
N. R.
,
Thorpe
,
S. J.
, and
Ainsworth
,
R. W.
,
2012
, “
Unsteady Effects on Transonic Turbine Blade-Tip Heat Transfer
,”
ASME J. Turbomach.
,
134
(
6
), p.
061002
.10.1115/1.4004845
17.
Atkins
,
N. R.
, and
Ainsworth
,
R. W.
,
2012
, “
Turbine Aerodynamic Performance Measurements Under Nonadiabatic Conditions
,”
ASME J. Turbomach.
,
134
(
6
), p.
061001
.10.1115/1.4004857
18.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
,
2004
,
Internal Flow, Concepts and Applications
,
Cambridge Univeristy Press, Cambridge, UK
.
19.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
655
.10.1115/1.2929299
20.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
,
5
(
1
), pp.
64
71
.10.2514/3.23116
21.
Thomas
,
G. A.
,
Atkins
,
N. R.
,
Thorpe
,
S. J.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2007
, “
The Effects of a Casing Step on the Over-Tip Casing Heat-Transfer and Static Pressure in a Transonic Turbine Stage
,”
ASME
Paper No. GT2007-27780. 10.1115/GT2007-27780
22.
Dambach
,
R.
,
Hodson
,
H. P.
, and
Huntsman
,
I.
,
1999
, “
An Experimental Study of Tip Clearance Flow in a Radial Inflow Turbine
,”
ASME J. Turbomach.
,
121
(
4
), pp.
644
650
.
10.1115/1.2836716
You do not currently have access to this content.