In modern turbomachinery blade design, nonradial stacking of the profiles is often assumed to be one of the ways to improve the performance of a machine. Instead of stacking the profiles radially, the stacking line is changed by several modifications such as sweep, dihedral, lean, or a combination of these. Nonradial stacking influences secondary flows that have effects on the aerodynamic parameters such as efficiency, pressure rise, blade loading, and stall margin. However, many of the studies in literature are limited by the comparison of two or three cases. This situation leads to conflicting results because a modification may cause a positive effect in one study while in another one, the same modification may have a negative effect. In this study, a modified free vortex axial fan (named as base fan (BF) for this study) is designed first and the profiles of the blades are stacked radially by joining the centroids of the profiles. Second, 45 deg, 30 deg forward sweep (FS) and backward sweep (BS) modifications are applied. The effects of these modifications on aerodynamic performance of the fans are investigated by means of numerical calculations. The results show that FS and BS do not significantly affect the overall performance of the fan at the design flowrate in spite of the occurring modifications of the local blade pressure distribution. However, at low flowrates, FS and BS have positive and negative effects on the fan performance, respectively.

References

1.
Ramakrishna
,
P. V.
, and
Govardhan
,
M.
,
2009
, “
Study of Sweep and Induced Dihedral Effects in Subsonic Axial Flow Compressor Passages—Part I: Design Considerations—Changes in Incidence, Deflection, and Streamline Curvature
,”
Int. J. Rotating Mach.
,
2009
, p.
787145
.10.1155/2009/787145
2.
Clemen
,
C.
, and
Stark
,
U.
,
2003
, “
Compressor Blades With Sweep and Dihedral: A Parameter Study
,”
5th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
, Prague, Czech Republic, Mar. 18–21, pp.
151
161
.
3.
Vad
,
J.
,
2008
, “
Aerodynamic Effects of Blade Sweep and Skew in Low-Speed Axial Flow Rotors at the Design Flow Rate: An Overview
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
222
(
A1
), pp.
69
85
.10.1243/09576509JPE471
4.
Ramakrishna
,
P. V.
, and
Govardhan
,
M.
,
2011
, “
On Loading Corrections and Loss Distributions in Low-Speed Forward Swept Axial Compressor Rotors
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
225
(
A1
), pp.
120
130
.10.1177/2041296710394254
5.
Lewis
,
R. I.
, and
Hill
,
J. M.
,
1971
, “
The Influence of Sweep and Dihedral in Turbomachinery Blade Rows
,”
J. Mech. Eng. Sci.
,
13
(
4
), pp.
266
285
.10.1243/JMES_JOUR_1971_013_043_02
6.
Tweedt
,
D. L.
,
Okiishi
,
T. H.
, and
Hathaway
,
M. D.
,
1986
, “
Stator Endwall Leading-Edge Sweep and Hub Shroud Influence on Compressor Performance
,”
ASME J. Turbomach.
,
108
(
2
), pp.
224
232
.10.1115/1.3262041
7.
Friedrichs
,
J.
,
Baumgarten
,
S.
,
Kosyna
,
G.
, and
Stark
,
U.
,
2001
, “
Effect of Stator Design on Stator Boundary Layer Flow in a Highly Loaded Single-Stage Axial-Flow Low-Speed Compressor
,”
ASME J. Turbomach.
,
123
(
3
), pp.
483
489
.10.1115/1.1370168
8.
Gallimore
,
S. J.
,
Bolger
,
J. J.
,
Cu
,
N. A.
,
Taylor
,
M. J.
,
Wright
,
P. I.
, and
Place
,
J. M. M.
,
2002
, “
The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading—Part II: Low and High-Speed Designs and Test Verification
,”
ASME J. Turbomach.
,
124
(
4
), pp.
533
541
.10.1115/1.1507334
9.
Gallimore
,
S. J.
,
Bolger
,
J. J.
,
Cumpsty
,
N. A.
,
Taylor
,
M. J.
,
Wright
,
P. I.
, and
Place
,
J. M. M.
,
2002
, “
The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading—Part I: University Research and Methods Development
,”
ASME J. Turbomach.
,
124
(
4
), pp.
521
532
.10.1115/1.1507333
10.
Gummer
,
V.
,
Wenger
,
U.
, and
Kau
,
H. P.
,
2001
, “
Using Sweep and Dihedral to Control Three-Dimensional Flow in Transonic Stators of Axial Compressors
,”
ASME J. Turbomach.
,
123
(
1
), pp.
40
48
.10.1115/1.1330268
11.
Vad
,
J.
,
Kwedikha
,
A. R. A.
, and
Jaberg
,
H.
,
2006
, “
Effects of Blade Sweep on the Performance Characteristics of Axial Flow Turbomachinery Rotors
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
220
(
A7
), pp.
737
751
.10.1243/09576509JPE249
12.
Smith
,
L. H. J.
, and
Yeh
,
H.
,
1963
, “
Sweep and Dihedral Effects in Axial-Flow Turbomachinery
,”
ASME J. Fluids Eng.
,
85
(
3
), pp.
401
414
.10.1115/1.3656623
13.
Beiler
,
M. G.
, and
Carolus
,
T. H.
,
1999
, “
Computation and Measurement of the Flow in Axial Flow Fans With Skewed Blades
,”
ASME J. Turbomach.
,
121
(
1
), pp.
59
66
.10.1115/1.2841234
14.
Corsini
,
A.
, and
Rispoli
,
F.
,
2004
, “
Using Sweep to Extend the Stall-Free Operational Range in Axial Fan Rotors
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
218
(
A3
), pp.
129
139
.10.1243/095765004323049869
15.
Clemen
,
C.
,
Gümmer
,
V.
,
Goller
,
M.
,
Rohkamm
,
H.
,
Stark
,
U.
, and
Saathoff
,
H.
,
2004
, “
Tip-Aerodynamics of Forward-Swept Rotor Blades in a Highly-Loaded Single-Stage Axial-Flow Low-Speed Compressor
,” International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC10), Honolulu, HI, Mar. 7-11.10.1115/027
16.
Vad
,
J.
,
Kwedikha
,
A. R. A.
,
Horvath
,
C.
,
Balczo
,
M.
,
Lohasz
,
M. M.
, and
Regert
,
T.
,
2007
, “
Aerodynamic Effects of Forward Blade Skew in Axial Flow Rotors of Controlled Vortex Design
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
221
(
A7
), pp.
1011
1023
.10.1243/09576509JPE420
17.
Yang
,
A.
,
Tang
,
T.
,
Zhang
,
H.
, and
Chen
,
K.
,
2008
, “
Effect of Swept Blade on Performance of a Small Size Axial Fan
,”
4th International Symposium on Fluid Machinery and Fluid Engineering
, Beijing, China, Nov. 24–27, pp.
279
284
.
18.
Bamberger
,
K.
, and
Carolus
,
T.
,
2012
, “
Optimization of Axial Flow Fans With Highly Swept Blades With Respect to Losses and Noise Reduction
,”
Noise Control Eng. J.
,
60
(
6
), pp.
716
725
.10.3397/1.3701043
19.
Corsini
,
A.
,
Rispoli
,
F.
, and
Vad
,
J.
,
2003
, “
Iterative Development of Axial Flow Fans of High Specific Performance With Swept Blades
,”
5th European Conference Turbomachinery Fluid Dynamics and Thermodynamics (ETC’03)
, Prague, Czech Republic, Mar. 17–22, pp.
245
256
.
20.
Li
,
Y.
,
Liu
,
J.
,
Ouyang
,
H.
, and
Du
,
Z. H.
,
2008
, “
Internal Flow Mechanism and Experimental Research of Low Pressure Axial Fan With Forward-Skewed Blades
,”
J. Hydrodyn.
,
20
(
3
), pp.
299
305
.10.1016/S1001-6058(08)60061-X
21.
Mohammed
,
K. P.
, and
Raj
,
D. P.
,
1977
, “
Investigations on Axial-Flow Fan Impellers With Forward Swept Blades
,”
ASME J. Fluid. Eng.
,
99
(
3
), pp.
543
547
.10.1115/1.3448839
22.
Sasaki
,
T.
, and
Breugelmans
,
F.
,
1998
, “
Comparison of Sweep and Dihedral Effects on Compressor Cascade Performance
,”
ASME J. Turbomach.
,
120
(
3
), pp.
454
463
.10.1115/1.2841738
23.
Hurault
,
J.
,
Kouidri
,
S.
,
Bakir
,
F.
, and
Rey
,
R.
,
2010
, “
Experimental and Numerical Study of the Sweep Effect on Three-Dimensional Flow Downstream of Axial Flow Fans
,”
Flow Meas. Instrum.
,
21
(
2
), pp.
155
165
.10.1016/j.flowmeasinst.2010.02.003
24.
Seo
,
S. J.
,
Choi
,
S. M.
, and
Kim
,
K. Y.
,
2008
, “
Design Optimization of a Low-Speed Fan Blade With Sweep and Lean
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
222
(
A1
), pp.
87
92
.10.1243/09576509JPE410
25.
Wright
,
T.
, and
Simmons
,
W. E.
,
1990
, “
Blade Sweep for Low-Speed Axial Fans
,”
ASME J. Turbomach.
,
112
(
1
), pp.
151
158
.10.1115/1.2927413
26.
Vad
,
J.
,
2012
, “
Forward Blade Sweep Applied to Low-Speed Axial Fan Rotors of Controlled Vortex Design: An Overview
,”
ASME
Paper No. GT2012-70103.10.1115/GT2012-70103
27.
Vad
,
J.
,
2012
, “
Incorporation of Forward Blade Sweep in Preliminary Controlled Vortex Design of Axial Flow Rotors
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
226
(
A4
), pp.
462
478
.10.1177/0957650912443445
28.
Vad
,
J.
, and
Bencze
,
F.
,
1998
, “
Three-Dimensional Flow in Axial Flow Fans of Non-Free Vortex Design
,”
Int. J. Heat Fluid Flow
,
19
(
6
), pp.
601
607
.10.1016/S0142-727X(98)10004-8
29.
Peng
,
W. W.
,
1988
,
Fundamentals of Turbomachinery
,
Wiley
,
Hoboken, NJ
, Chap. 5.
30.
Jacobs
,
E. N.
,
Ward
,
K. E.
, and
Pinkerton
,
R. M.
,
1933
, “
The Characteristics of 78 Related Airfoil Sections From Tests in the Variable-Density Wind Tunnel
,” NACA, Washington, DC, Report No. 460.
31.
Dixon
,
S. L.
, and
Hall
,
C. A.
,
2010
,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
Butterworth-Heinemann/Elsevier
,
Burlington, MA
., Chap. 3.
32.
ANSYS,
2010
, ANSYS Cfx-Solver Theory Guide Release 13.0, ANSYS Inc., Canonsburg, PA.
33.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Application
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
34.
AMCA,
2007
, “Laboratory Methods of Testing Fans for Certified Aerodynamic Performance Rating,” Air Movement and Control Association, Arlington Heights, IL, Standard No. ANSI/AMCA 210-07, ANSI/ASHRAE 51/07.
35.
Lakshminarayana
,
B.
,
1996
,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
Wiley
,
New York
, Chap. 5.
You do not currently have access to this content.