Wind turbines are exposed to unsteady incident flow conditions such as gusts or tower interference. These cause a change in the blades' local angle of attack, which often leads to flow separation at the inner rotor sections. Recirculation areas and dynamic stall may occur, which lead to an uneven load distribution along the blade. In this work, a fluidic actuator is developed that reduces flow separation. The functional principle is adapted from a fluidic amplifier. High pressure air fed by an external supply flows into the interaction region of the actuator. Two control ports, oriented perpendicular to the inlet, allow for a steering of the actuation flow. One of the control ports is connected to the suction side, the other to the pressure side of the airfoil. Depending on the pressure difference that varies with the angle of attack, the actuation air is directed into one of four outlet channels. These guide the air to different chordwise exit locations on the airfoil's suction side. The appropriate actuation location adjusts automatically according to the pressure difference between the control ports and therefore incidence. Suction side flow separation is delayed as the boundary layer is enriched with kinetic energy. Experiments were conducted on a DU97-W-300 airfoil at Re = 2.2 × 105. Compared to the baseline, lift variations due to varying angles of attack were reduced by an order of magnitude. A Fast/Aerodyn simulation of a full wind turbine rotor was performed to show the real world load reduction potential. Additionally, system integration is discussed, which includes suggestions on producibility and operational details.
Skip Nav Destination
Article navigation
June 2015
Research-Article
Development of a Fluidic Actuator for Adaptive Flow Control on a Thick Wind Turbine Airfoil
Sebastian Niether,
Sebastian Niether
1
Chair of Fluid Dynamics
Hermann-Föttinger-Institut,
e-mail: sebastian.niether@tu-berlin.de
Hermann-Föttinger-Institut,
Technische Universität Berlin
,Müller-Breslau-Str. 8
,Berlin D-10623
, Germany
e-mail: sebastian.niether@tu-berlin.de
1Corresponding author.
Search for other works by this author on:
Bernhard Bobusch,
Bernhard Bobusch
Chair of Fluid Dynamics
Hermann-Föttinger-Institut,
Hermann-Föttinger-Institut,
Technische Universität Berlin
,Müller-Breslau-Str. 8
,Berlin D-10623
, Germany
Search for other works by this author on:
David Marten,
David Marten
Chair of Fluid Dynamics
Hermann-Föttinger-Institut,
Hermann-Föttinger-Institut,
Technische Universität Berlin
,Müller-Breslau-Str. 8
,Berlin D-10623
, Germany
Search for other works by this author on:
Georgios Pechlivanoglou,
Georgios Pechlivanoglou
Chair of Fluid Dynamics
Hermann-Föttinger-Institut,
Hermann-Föttinger-Institut,
Technische Universität Berlin
,Müller-Breslau-Str. 8
,Berlin D-10623
, Germany
Search for other works by this author on:
Christian Navid Nayeri,
Christian Navid Nayeri
Chair of Fluid Dynamics
Hermann-Föttinger-Institut,
Hermann-Föttinger-Institut,
Technische Universität Berlin
,Müller-Breslau-Str. 8
,Berlin D-10623
, Germany
Search for other works by this author on:
Christian Oliver Paschereit
Christian Oliver Paschereit
Chair of Fluid Dynamics
Hermann-Föttinger-Institut,
Hermann-Föttinger-Institut,
Technische Universität Berlin
,Müller-Breslau-Str. 8
,Berlin D-10623
, Germany
Search for other works by this author on:
Sebastian Niether
Chair of Fluid Dynamics
Hermann-Föttinger-Institut,
e-mail: sebastian.niether@tu-berlin.de
Hermann-Föttinger-Institut,
Technische Universität Berlin
,Müller-Breslau-Str. 8
,Berlin D-10623
, Germany
e-mail: sebastian.niether@tu-berlin.de
Bernhard Bobusch
Chair of Fluid Dynamics
Hermann-Föttinger-Institut,
Hermann-Föttinger-Institut,
Technische Universität Berlin
,Müller-Breslau-Str. 8
,Berlin D-10623
, Germany
David Marten
Chair of Fluid Dynamics
Hermann-Föttinger-Institut,
Hermann-Föttinger-Institut,
Technische Universität Berlin
,Müller-Breslau-Str. 8
,Berlin D-10623
, Germany
Georgios Pechlivanoglou
Chair of Fluid Dynamics
Hermann-Föttinger-Institut,
Hermann-Föttinger-Institut,
Technische Universität Berlin
,Müller-Breslau-Str. 8
,Berlin D-10623
, Germany
Christian Navid Nayeri
Chair of Fluid Dynamics
Hermann-Föttinger-Institut,
Hermann-Föttinger-Institut,
Technische Universität Berlin
,Müller-Breslau-Str. 8
,Berlin D-10623
, Germany
Christian Oliver Paschereit
Chair of Fluid Dynamics
Hermann-Föttinger-Institut,
Hermann-Föttinger-Institut,
Technische Universität Berlin
,Müller-Breslau-Str. 8
,Berlin D-10623
, Germany
1Corresponding author.
Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received September 8, 2014; final manuscript received September 15, 2014; published online November 25, 2014. Editor: Ronald Bunker.
J. Turbomach. Jun 2015, 137(6): 061003 (10 pages)
Published Online: June 1, 2015
Article history
Received:
September 8, 2014
Revision Received:
September 15, 2014
Online:
November 25, 2014
Citation
Niether, S., Bobusch, B., Marten, D., Pechlivanoglou, G., Navid Nayeri, C., and Oliver Paschereit, C. (June 1, 2015). "Development of a Fluidic Actuator for Adaptive Flow Control on a Thick Wind Turbine Airfoil." ASME. J. Turbomach. June 2015; 137(6): 061003. https://doi.org/10.1115/1.4028654
Download citation file:
Get Email Alerts
Cited By
2024 Associate Editors
J. Turbomach
Influence of Parametric Modeling of Tip Winglets on the Stable Operating Margin of the Stage 37 Compressor
J. Turbomach (October 2025)
Related Articles
Structural Analysis of a Small H-Darrieus Wind Turbine Using Beam
Models: Development and Assessment
J. Turbomach (January,2015)
Blade Design Criteria to Compensate the Flow Curvature Effects in H-Darrieus Wind Turbines
J. Turbomach (January,2015)
Wake Analysis of a Finite Width Gurney Flap
J. Eng. Gas Turbines Power (June,2016)
Potential Load Reduction Using Airfoils with Variable Trailing Edge Geometry
J. Sol. Energy Eng (November,2005)
Related Chapters
Boundary Layer Analysis
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach
Aerodynamic Performance Analysis
Axial-Flow Compressors