Wind turbines are exposed to unsteady incident flow conditions such as gusts or tower interference. These cause a change in the blades' local angle of attack, which often leads to flow separation at the inner rotor sections. Recirculation areas and dynamic stall may occur, which lead to an uneven load distribution along the blade. In this work, a fluidic actuator is developed that reduces flow separation. The functional principle is adapted from a fluidic amplifier. High pressure air fed by an external supply flows into the interaction region of the actuator. Two control ports, oriented perpendicular to the inlet, allow for a steering of the actuation flow. One of the control ports is connected to the suction side, the other to the pressure side of the airfoil. Depending on the pressure difference that varies with the angle of attack, the actuation air is directed into one of four outlet channels. These guide the air to different chordwise exit locations on the airfoil's suction side. The appropriate actuation location adjusts automatically according to the pressure difference between the control ports and therefore incidence. Suction side flow separation is delayed as the boundary layer is enriched with kinetic energy. Experiments were conducted on a DU97-W-300 airfoil at Re = 2.2 × 105. Compared to the baseline, lift variations due to varying angles of attack were reduced by an order of magnitude. A Fast/Aerodyn simulation of a full wind turbine rotor was performed to show the real world load reduction potential. Additionally, system integration is discussed, which includes suggestions on producibility and operational details.

References

1.
van Dam
,
C. P.
,
Berg
,
D. E.
, and
Johnson
,
S. J.
,
2008
, “
Active Load Control Techniques for Wind Turbines
,” Technical Report No. SAND2008-4809, Sandia National Laboratories, Albuquerque, NM.
2.
Schlipf
,
D.
,
Schuler
,
S.
,
Grau
,
P.
,
Allgöwer
,
F.
, and
Kühn
,
M.
,
2010
, “
Look-Ahead Cyclic Pitch Control Using LIDAR
,”
The Science of Making Torque From Wind
(TORQUE 2010), Heraklion, Greece, June 28–30.
3.
Geyler
,
M.
, and
Caselitz
,
P.
,
2007
, “
Individual Blade Pitch Control Design for Load Reduction on Large Wind Turbines
,”
European Wind Energy Conference
(EWEC 2007), Milano, Italy, May 7–10, pp.
82
86
.
4.
Bossanyi
,
E. A.
,
2003
, “
Individual Blade Pitch Control for Load Reduction
,”
Wind Energy
,
6
(
2
), pp.
119
128
.10.1002/we.76
5.
Mueller-Vahl
,
H.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2012
, “
Vortex Generators for Wind Turbine Blades: A Combined Wind Tunnel and Wind Turbine Parametric Study
,”
ASME
Paper No. GT2012-69197.10.1115/GT2012-69197
6.
Holst
,
D.
,
Bach
,
A. B.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2013
, “
Influence of a Finite Width Micro-Tab on the Spanwise Lift Distribution
,”
ASME
Paper No. GT2013-94381.10.1115/GT2013-94381
7.
Hau
,
E.
, and
von Renouard
,
H.
,
2013
,
Wind Turbines: Fundamentals, Technologies, Applications, Economics
,
Springer
,
London
.
8.
Weinzierl
,
G.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2012
, “
Performance Optimization of Wind Turbine Rotors With Active Flow Control—Part 2: Active Aeroelastic Simulations
,”
ASME
Paper No. GT2012-69200.10.1115/GT2012-69200
9.
Christakis
,
D. G.
,
Condaxakis
,
C. G.
, and
Chortatsos
,
T. J.
,
2006
, “
Full Span Passive Controlled Wind Turbine
,”
European Wind Energy Conference
(EWEC 2006), Athens, Greece, Feb. 27–Mar. 2, Paper No. BL3.351.
10.
Pechlivanoglou
,
G.
,
2012
, “
Passive and Active Flow Control Solutions for Wind Turbine Blades
,” Ph.D. thesis, Technische Universität Berlin, Berlin, Germany.
11.
Eisele
,
O.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2011
, “
Experimental Investigation of Dynamic Load Control Strategies Using Active Microflaps on Wind Turbine Blades
,” European Wind Energy Association Annual Event (EWEA 2012),
Brussels, Belgium
, Mar. 14–17.
12.
Wingerden
,
J. W.
,
Hulskamp
,
A.
,
Barlas
,
T.
,
Marrant
,
B.
,
van Kuik
,
G. A. M.
,
Molenaar
,
D.-P.
, and
Verhaegen
,
M.
,
2008
, “
On the Proof of Concept of a ‘Smart' Wind Turbine Rotor Blade for Load Alleviation
,”
Wind Energy
,
11
(
5
), pp.
265
280
.10.1002/we.264
13.
Blaylock
,
M.
,
Chow
,
R.
, and
van Dam
,
C. P.
,
2010
, “
Comparison of Microjets With Microtabs for Active Aerodynamic Load Control
,”
AIAA
Paper No. 2010-4409.10.2514/6.2010-4409
14.
Chopra
,
I.
,
2002
, “
Review of State of Art of Smart Structures and Integrated Systems
,”
AIAA J.
,
40
(
11
), pp.
2145
2187
.10.2514/2.1561
15.
Prince
,
S. A.
, and
Khodagolian
,
V.
,
2009
, “
Aerodynamic Stall Suppression on Airfoil Sections Using Passive Air-Jet Vortex Generators
,”
AIAA J.
,
47
(
9
), 2232–2242.10.2514/1.41986
16.
Johnston
,
J.
, and
Nishi
,
M.
,
1990
, “
Vortex Generator Jets—Means for Flow Separation Control
,”
AIAA J.
,
28
(
16
), pp.
989
994
.10.2514/3.25155
17.
Truckenbrodt
,
E.
,
2008
,
Fluidmechanik. Band 1: Grundlagen und elementare Strömungsvorgänge dichtebeständiger Fluide
,
Springer
, Berlin.
18.
Chen
,
C.
,
Wygnanski
,
I.
, and
Seele
,
R.
,
2010
, “
On the Comparative Effectiveness of Steady Blowing and Suction Used for Separation and Circulation Control on an Elliptical Airfoil
,”
AIAA
Paper No. 2010-4715.10.2514/6.2010-4715
19.
Timmer
,
W. A.
, and
van Rooij
,
R. P. J. O. M.
,
2003
, “
Summary of the Delft University Wind Turbine Dedicated Airfoils
,”
ASME J. Sol. Energy Eng.
,
125
(4), pp.
488
496
.10.1115/1.1626129
20.
Belsterling
,
C. A.
,
1971
,
Fluidic Systems Design
, 1st ed.,
Wiley
, New York.
21.
Arwatz
,
G.
,
Fono
,
I.
, and
Seifert
,
A.
,
2008
, “
Suction and Oscillatory Blowing Actuator
,”
IUTAM Symposium on Flow Control and MEMS
, London, UK, Sept. 19–22, pp.
33
44
.10.1007/978-1-4020-6858-4_4
22.
Urzynicok
,
F.
,
2003
, “
Separation Control by Flow-Induced Oscillations of a Resonator
,” Ph.D. thesis, Technische Universität Berlin, Berlin, Germany.
23.
Woszidlo
,
R.
,
2011
, “
Parameters Governing Separation Control With Sweeping Jet Actuators
,” Ph.D. thesis, University of Arizona, Tucson, AZ.
24.
Barlow
,
J. B.
,
Rae
,
W. H.
, and
Pope
,
A.
,
1999
,
Low-Speed Wind Tunnel Testing
, 3rd ed.,
Wiley
, New York.
25.
Marten
,
D.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2010
, “
Integration of a WT Blade Design Tool in XFOIL/XFLR5
,”
10th German Wind Energy Conference (DEWEK 2010)
,
Bremen, Germany
, Nov. 17–18.
26.
Drela
,
M.
, and
Youngren
,
H.
,
2001
, “XFOIL 6.94 User Guide,” MIT Aero & Astro, Cambridge, MA.
27.
Culley
,
D. E.
,
Bright
,
M. M.
,
Prahst
,
P. S.
, and
Strazisar
,
A. J.
,
2003
, “
Active Flow Separation Control of a Stator Vane Using Surface Injection in a Multistage Compressor Experiment
,” NASA Glenn Research Center, Cleveland, OH, Report No. TM-212356.
28.
Nagib
,
H. M.
,
Kiedaisch
,
J. W.
,
Wygnanski
,
I. J.
,
Stalker
,
A. D.
,
Wood
,
T.
, and
McVeigh
,
M. A.
,
2004
, “
First-in-Flight Full-Scale Application of Active Flow Control: The XV-15 Tiltrotor Download Reduction
,” RTO AVT Specialists' Meeting on Enhancement of NATO Military Flight Vehicle Performance by Management of Interacting Boundary Layer Transition and Separation, Prague, Czech Republic, Oct. 4–7, Report No. RTO-MP-AVT-111.
29.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
30.
Williams
,
J.
,
1958
, “
British Research on Boundary-Layer Control for High Lift by Blowing
,”
Z. Flugwiss.
,
6
(5), pp. 143–150.
31.
Burton
,
T.
,
Jenkins
,
N.
,
Sharpe
,
D.
, and
Bossanyi
,
E.
,
2011
,
Wind Energy Handbook
, 2nd ed.,
Wiley
, Chichester,
UK
.
32.
Laino
,
D. J.
, “NWTC Information Portal (AeroDyn),” National Renewable Energy Laboratory, Golden, CO, accessed Oct. 31, 2013, https://nwtc.nrel.gov/AeroDyn
33.
Jonkman
,
J.
, and
Butterfield
,
S.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500-38060.
34.
Veers
,
P. S.
,
1988
, “
Three-Dimensional Wind Simulation
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND88-0152.
35.
Lindenburg
,
C.
,
2004
, “
Modelling of Rotational Augmentation Based on Engineering Considerations and Measurements
,”
European Wind Energy Conference
(EWEC 2004), London, UK, Nov. 22–25.
36.
Dwyer
,
H.
, and
Aiccroskey
,
W.
,
1971
, “
Crossflow and Unsteady Boundary-Layer Effects on Rotating Blades
,”
AIAA J.
,
9
(
8
), pp.
1498
1505
.10.2514/3.49952
37.
BOGE Compressed Air Systems
, “
BOGE BLUEKAT Data Sheet
,” Boge America Inc., Powder Springs, GA, accessed Dec. 19, 2013, http//www.boge.de/artikel/download/pdf_brochure/344_DE_BLUEKAT.pdf
You do not currently have access to this content.