In order to continue increasing the efficiency of gas turbines, an important effort is made on the thermal management of the turbine stage. In particular, understanding and accurately estimating the thermal loads in a vane passage is of primary interest to engine designers looking to optimize the cooling requirements and ensure the integrity of the components. This paper focuses on the measurement of endwall heat transfer in a vane passage with a three-dimensional (3D) airfoil shape and cylindrical endwalls. It also presents a comparison with predictions performed using an in-house developed Reynolds-Averaged Navier–Stokes (RANS) solver featuring a specific treatment of the numerical smoothing using a flow adaptive scheme. The measurements have been performed in a steady state axial turbine facility on a novel platform developed for heat transfer measurements and integrated to the nozzle guide vane (NGV) row of the turbine. A quasi-isothermal boundary condition is used to obtain both the heat transfer coefficient and the adiabatic wall temperature within a single measurement day. The surface temperature is measured using infrared thermography through small view ports. The infrared camera is mounted on a robot arm with six degrees of freedom to provide high resolution surface temperature and a full coverage of the vane passage. The paper presents results from experiments with two different flow conditions obtained by varying the mass flow through the turbine: measurements at the design point (ReCax=7.2×105) and at a reduced mass flow rate (ReCax=5.2×105). The heat transfer quantities, namely the heat transfer coefficient and the adiabatic wall temperature, are derived from measurements at 14 different isothermal temperatures. The experimental data are supplemented with numerical predictions that are deduced from a set of adiabatic and diabatic simulations. In addition, the predicted flow field in the passage is used to highlight the link between the heat transfer patterns measured and the vortical structures present in the passage.

References

1.
Rose
,
M.
,
1999
, “
What Should We Measure? An Aero-Engine Turbine Aero-Dynamic Perspective
,” Rolls-Royce plc, London, UK, Technical Report No. RR-PNR-92620.
2.
Langston
,
L.
,
Nice
,
M.
, and
Hooper
,
R.
,
1977
, “
3-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turbines Power
,
99
(
1
), pp.
21
28
.10.1115/1.3446247
3.
Blair
,
M.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
,
96
(
4
), pp.
524
529
.10.1115/1.3450239
4.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
,
1980
, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Gas Turbines Power
,
102
(
2
), pp.
257
267
.10.1115/1.3230246
5.
Goldstein
,
R.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
(
4a
), pp.
862
869
.10.1115/1.3250586
6.
Gaugler
,
R. E.
, and
Russell
,
L. M.
,
1984
, “
Comparison of Visualized Turbine Endwall Secondary Flows and Measured Heat Transfer Patterns
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
168
172
.10.1115/1.3239530
7.
Kang
,
M. B.
,
Kohli
,
A.
, and
Thole
,
K. A.
,
1999
, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomachinery
,
121
(
3
), pp.
558
568
.10.1115/1.2841351
8.
Lethander
,
A. T.
,
Thole
,
K. A.
,
Zess
,
G.
, and
Wagner
,
J.
,
2004
, “
Vane–Endwall Junction Optimization to Reduce Turbine Vane Passage Adiabatic Wall Temperatures
,”
J. Propul. Power
,
20
(
6
), pp.
1096
1104
.10.2514/1.3887
9.
Lynch
,
S. P.
,
Sundaram
,
N.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2011
, “
Heat Transfer for a Turbine Blade With Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
133
(
1
), p.
011019
.10.1115/1.4000542
10.
O'Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Ligrani
,
P. M.
, and
Friedrichs
,
S.
,
2011
, “
Comparison of Heat Transfer Measurement Techniques on a Transonic Turbine Blade Tip
,”
ASME J. Turbomach.
,
133
(
2
), p.
021028
.10.1115/1.4001236
11.
Abhari
,
R. S.
, and
Epstein
,
A. H.
,
1994
, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
,
116
(
1
), pp.
63
70
.10.1115/1.2928279
12.
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Barter
,
J. W.
,
Green
,
B. R.
, and
Bergholz
,
R. F.
,
2005
, “
Aerodynamic and Heat-Flux Measurements With Predictions on a Modern One and One-Half State High Pressure Transonic Turbine
,”
ASME J. Turbomach.
,
127
(
3
), pp.
522
531
.10.1115/1.1861916
13.
Giel
,
P. W.
,
Van Fossen
,
G.
,
Boyle
,
R.
,
Thurman
,
D.
, and
Civinskas
,
K.
,
1999
, “
Blade Heat Transfer Measurements and Predictions in a Transonic Turbine Cascade
,”
ASME
Paper No. 99-GT-125.
14.
Lorenz
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2012
, “
Experimental Study of Surface Roughness Effects on a Turbine Airfoil in a Linear Cascade—Part I: External Heat Transfer
,”
ASME J. Turbomach.
,
134
(
4
), p.
041006
.10.1115/1.4003234
15.
Moffat
,
R.
,
1998
, “
What's New in Convective Heat Transfer?
,”
Int. J. Heat Fluid Flow
,
19
(
2
), pp.
90
101
.10.1016/S0142-727X(97)10014-5
16.
Anderson
,
A. M.
, and
Moffat
,
R. J.
,
1992
, “
The Adiabatic Heat Transfer Coefficient and the Superposition Kernel Function: Part 1—Data for Arrays of Flatpacks for Different Flow Conditions
,”
ASME J. Electron. Packag.
,
114
(
1
), pp.
14
21
.10.1115/1.2905435
17.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High-Work Turbine
,”
ASME J. Turbomach.
,
132
(
2
), p.
021021
.10.1115/1.4000485
18.
Mansour
,
M.
,
Chokani
,
N.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2012
, “
Impact of Time-Resolved Entropy Measurement on a One-and-One-Half-Stage Axial Turbine Performance
,”
ASME J. Turbomach.
,
134
(
2
), p.
021008
.10.1115/1.4003247
19.
Gengenbach
,
J.
,
Kabelac
,
S.
, and
Koirala
,
L.
,
2005
, “
Measurement of Directional Spectral Emissivities of Microstructured Surfaces
,” 17th European Conference on Thermophysical Properties (ECTP), Bratislava, Slovakia, Sept. 5–8, Paper No. 183.
20.
Faugeras
,
O.
,
Luong
,
Q.-T.
, and
Papadopoulou
,
T.
,
2001
,
The Geometry of Multiple Images: The Laws That Govern the Formation of Images of a Scene and Some of Their Applications
,
MIT Press
,
Cambridge, MA
.
21.
Kays
,
W.
,
Crawford
,
M.
, and
Weigand
,
B.
,
2004
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
22.
International Organisation for Standardisation
,
1995
,
Guide to the Expression of Uncertainty in Measurement (GUM)
,
ISO
,
Geneva, Switzerland
.
23.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Expt. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
24.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
ASME J. Mech. Eng.
,
75
, pp.
3
8
.
25.
Burdet
,
A.
,
2005
, “
A Computationally Efficient Feature-Based Jet Model for Prediction of Film-Cooling Flows
,” Ph.D. thesis, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland.
26.
Basol
,
A.
,
Raheem
,
A.
,
Huber
,
M.
, and
Abhari
,
R.
, “Full-Annular Numerical Investigation of the Rim Seal Cavity Flows Using GPUs,”
ASME
Paper No. GT2014-26755.10.1115/GT2014-26755
27.
Behr
,
T.
,
2007
, “
Control of Rotor Tip Leakage and Secondary Flow by Casing Air Injection in Unshrouded Axial Turbines
,” Ph.D. thesis, ETH Zurich, Zurich, Switzerland.
You do not currently have access to this content.