Integrated gasification combined cycle (IGCC) power plants allow for increased efficiency and reduced emissions as compared to pulverized coal plants. A concern with IGCCs is that impurities in the fuel from the gasification of coal can deposit on turbine components reducing the performance of sophisticated film-cooling geometries. Studies have shown that recessing a row of film-cooling holes in a transverse trench can improve cooling performance; however, the question remains as to whether or not these improvements exist in severe environments such as when particle deposition occurs. Dynamic simulations of deposition were completed using wax injection in a large-scale vane cascade with endwall film cooling. Endwall cooling effectiveness was quantified in two specific endwall locations using trenches with depths of 0.4D, 0.8D, and 1.2D, where D is the diameter of a film-cooling hole. The effects of trench depth, momentum flux ratio, and particle phase on adiabatic effectiveness were quantified using infrared thermography. Results showed that the 0.8D trench outperformed other geometries with and without deposition on the surface. Deposition of particles reduced the cooling effectiveness by as much as 15% at I = 0.23 with the trenched holes as compared to 30% for holes that were not placed in a transverse trench.

References

1.
Lawson
,
S. A.
, and
Thole
,
K. A.
, 2010, “
Simulations of Multi-Phase Particle Deposition on Endwall Film-Cooling
,” ASME Paper GT2010-22376.
2.
Harrison
,
K. L.
,
Dorrington
,
J. R.
,
Dees
,
J. E.
,
Bogard
,
D. G.
, and
Bunker
,
R. S.
, 2007, “
Turbine Airfoil Net Heat Flux Reduction With Cylindrical Holes Embedded in a Transverse Trench
,” ASME Paper GT2007-27996.
3.
Sundaram
,
N.
, and
Thole
,
K. A.
, 2008, “
Bump and Trench Modifications to Film-Cooling Holes at the Vane-Endwall Junction
,”
ASME J. Turbomach.
,
130
(
4
), pp.
041013
-1–041013-
9
.
4.
Somawardhana
,
R. P.
, and
Bogard
,
D. G.
, 2007b, “
Effects of Obstructions and Surface Roughness on Film Cooling Effectiveness With and Without a Transverse Trench
,” ASME Paper GT2007-28003.
5.
Bunker
,
R. S.
, 2002, “
Film-Cooling Effectiveness Due to Discrete Holes Within a Transverse Surface Slot
,” ASME Paper GT2002-30178.
6.
Waye
,
S. K.
, and
Bogard
,
D. G.
, 2006,
High Resolution Film Cooling Effectiveness Measurements of Axial Holes Embedded in a Transverse Trench With Various Trench Configurations
,” ASME Paper GT2006-90226.
7.
Jensen
,
J. W.
,
Squire
,
S. W.
,
Bons
,
J. P.
, and
Fletcher
,
T. H.
, 2005, “
Simulated Land-Based Turbine Deposits Generated in an Accelerated Deposition Facility
,”
ASME J. Turbomach.
,
127
, pp.
462
470
.
8.
Smith
,
C.
,
Barker
,
B.
,
Clum
,
C.
, and
Bons
,
J.
, 2010, “
Deposition in a Turbine Cascade With Combusting Flow
,” ASME Paper GT2010-22855.
9.
Wenglarz
,
R. A.
, and
Fox
,
R. G.
, 1990, “
Physical Aspects of Deposition From Coal-Water Fuels Under Gas Turbine Conditions
,”
ASME J. Eng. Gas Turbines Power
,
112
, pp.
9
14
.
10.
Walsh
,
P. M.
,
Sayre
,
A. N.
,
Loehden
,
D. O.
,
Monroe
,
L. S.
,
Beer
,
J. M.
, and
Sarofim
,
A. F.
, 1990, “
Deposition of Bituminous Coal Ash on an Isolated Heat Exchanger Tube: Effects of Coal Properties on Deposit Growth
,”
Prog. Energy Combust. Sci.
,
16
, pp.
327
345
.
11.
Richards
,
G. A.
,
Logan
,
R. G.
,
Meyer
,
C. T.
, and
Anderson
,
R. J.
, 1992, “
Ash Deposition at Coal-Fired Gas Turbine Conditions: Surface and Combustion Temperature Effects
,”
ASME J. Energy Gas Turbines Power
,
114
, pp.
132
138
.
12.
Wenglarz
,
R. A.
, and
Wright
,
I. G.
, 2003, “
Alternate Fuels for Land-Based Turbines
,”
Proceedings of the Workshop on Materials and Practices to Improve Resistance to Fuel Derived Environmental Damage in Land-and Sea-Based Turbines
, Oct. 22–24, CO School of Mines, Golden, CO, pp.
4
–45 to 4–
64
.
13.
Ai
,
W.
,
Laycock
,
R. G.
,
Rappleye
,
D. S.
,
Fletcher
,
T. H.
, and
Bons
,
J. P.
, 2009, “
Effect of Particle Size and Trench Configuration on Deposition from Fine Coal Flyash near Film Cooling Holes
,” ASME Paper GT2009-59571.
14.
Lawson
,
S. A.
, and
Thole
,
K. A.
, 2009, “
The Effects of Simulated Particle Deposition on Film Cooling
,” ASME Paper GT2009-59109.
15.
Albert
,
J. E.
,
Keefe
,
K. J.
, and
Bogard
,
D. G.
, 2009, “
Experimental Simulation of Contaminant Deposition on a Film Cooled Turbine Airfoil Leading Edge
,” ASME Paper No. IMECE2009-11582.
16.
Baines
,
W. D.
, and
Peterson
,
E. G.
, 1951, “
An Investigation of Flow Through Screens
,”
Trans. ASME
,
73
, pp.
467
480
.
17.
Radomsky
,
R. W.
, and
Thole
,
K. A.
, 2000, “
Flowfield Measurements for a Highly Turbulent Flow in a Stator Vane Passage
,”
ASME J. Turbomach.
,
122
, pp.
255
262
.
18.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, pp.
3
17
.
19.
Dring
,
R. P.
,
Caspar
,
J. R.
, and
Suo
,
M.
, 1979, “
Particle Trajectories in Turbine Cascades
,”
J. Energy
,
3
(
3
), pp.
161
166
.
20.
Bons
,
J. P.
,
Crosby
,
J.
,
Wammack
,
J. E.
,
Bentley
,
B. I.
, and
Fletcher
,
T. H.
, 2007, “
High Pressure Turbine Deposition in Land-Based Gas Turbines From Various Synfuels
,”
ASME J. Turbomach.
,
129
, pp.
135
143
.
21.
Li
,
R.
,
Lei
,
W.
,
Yang
,
T.
, and
Raninger
,
B.
, 2007, “
Investigation of MSWI Fly Ash Melting Characteristic By DSC-DTA
,”
Waste Manage.
,
27
, pp.
1383
1392
.
22.
Krishnaiah
,
W.
, and
Singh
,
D. N.
, 2006, “
Determination of Thermal Properties of Some Supplementary Cementing Materials Used in Cement and Concrete
,”
Constr. Building Mater.
,
20
, pp.
193
198
.
23.
Wang
,
Q.
,
Tian
,
S.
,
Wang
,
Q.
,
Huang
,
Q.
, and
Yang
,
J.
, 2008, “
Melting Characteristics During the Vitrification of MSWI Fly Ash With a Pilot-Scale Diesel Oil Furnace
,”
J. Hazard. Mater.
,
160
, pp.
375
381
.
24.
Dennis
,
R. A.
,
Shelton
,
W. W.
, and
Le
,
P.
, 2007, “
Development of Baseline Performance Values for Turbines in Existing IGCC Applications
,” ASME Paper GT2007-28096.
25.
Johnson
,
D.
, 1996, Original Pratt & Whitney contact regarding operating conditions and geometric specifications of PW6000 nozzle guide vane.
26.
Thole
,
K. A.
,
Sinha
,
A. K.
, and
Bogard
,
D. G.
, 1990, “
Mean Temperature Measurements of Jets With a Crossflow for Gas Turbine Film Cooling Application
,”
Rotating Transport Phenomena
,
J. H.
Kim
and
W. J.
Yang
, eds.,
Hemisphere Publishing
,
New York
.
You do not currently have access to this content.