In this paper we examine the interaction between the cavity and main flows of three different rotor cavities. For each of the three rotor cavities, the cavity inlets differ in their axial cavity lengths, which are modified by extending the upper casing stator platform. The three cavity volumes are comprised of a baseline case, along with a 14% and a 28% volume reduction relative to the baseline case. Measurements show that there is an increase in efficiency of 0.3% for the 14% cavity volume reduction case (relative to the baseline case), whereas a further volume reduction of 28% (relative to the baseline case) decreases the efficiency. Computational analysis highlights the breakup of a toroidal vortex within the cavity as the primary factor explaining the changes in efficiency. The dominant cavity vortex originally present in the baseline case firstly broken up into two smaller vortices for the 14% cavity volume reduction case and secondly, completely replaced with a strong radial jet for the 28% volume reduction case. From a design perspective, reducing the cavity volume by extending the upper casing stator platform yields improvements in efficiency provided that the cavity vortex is still present. The design considerations, analysis and the associated aerodynamics are discussed in detail within this paper.

References

1.
Egli
,
A.
, 1935, “
The Leakage of Steam Through Labyrinth Seals
,”
Trans. ASME
,
57
, pp.
115
122
.
2.
Traupel
,
W.
, 1973,
Thermische Turbomaschinen
,
Springer-Verlag
,
Berlin
.
3.
Wallis
,
A. M.
,
Denton
,
J. D.
, and
Demargne
A. A. J.
, 2001, “
The Control of Shroud Leakage Flows to Reduce Aerodynamic Losses in a Low Aspect Ratio Shrouded Axial Flow Turbine
,”
ASME J. Turbomach.
,
123
, pp.
334
341
.
4.
Rosic
,
B.
, and
Denton
,
J. D.
, 2008, “
Control of Shroud Leakage Loss by Reducing Circumferential Mixing
,”
ASME J. Turbomach.
,
130
, pp.
1
7
.
5.
Mahle
,
I.
, 2010, “
Improving the Interaction Between Leakage Flows and Main Flow in a Low Pressure Turbine
,” ASME Paper No. GT2010-22448.
6.
Denton
,
J. D.
, 1993, “
Loss Mechanisms in Turbomachines
,” The 1993 IGTI Scholar Lecture,
ASME J. Turbomach.
,
115
, pp.
621
656
.
7.
Peters
,
P.
,
Giboni
,
A.
,
Menter
,
J. R.
,
Pfost
,
H.
, and
Wolter
,
K.
, 2005, “
Unsteady Interaction of Labyrinth Seal Leakage Flow and Downstream Stator Flow in a Shrouded 1.5 Stage Axial Turbine
,” ASME Paper No. GT2005-68065.
8.
Anker
,
J. E.
,
Mayer
,
J. F.
, and
Casey
,
M. V.
, 2005, “
The Impact of Rotor Labyrinth Seal Leakage Flow on the Loss Generation in an Axial Turbine
,”
Proc. IMechE Part A
,
219
, pp.
481
490
.
9.
Gier
,
J.
,
Stubert
,
B.
,
Brouillet
,
B.
, and
de Vito
,
L.
, 2005, “
Interaction of Shrouded Leakage Flow and Main Flow in a Three-Stage LP Turbine
,”
ASME J. Turbomach.
,
125
, pp.
649
658
.
10.
Pau
,
M.
,
Cambuli
,
F.
, and
Mandas
,
N.
, 2008, “
Shroud Leakage Modeling of the Flow in a Two-Stage Axial Test Turbine
,” ASME Paper No. GT2008-51093.
11.
Adami
,
P.
,
Martelli
,
F.
, and
Cecchi
,
C.
, 2007, “
Analysis of the Shroud Leakage Flow and Mainflow Interactions in High-Pressure Turbines Using an Unsteady Computational Fluid Dynamics Approach
,”
Proc. IMechE Part A
,
221
, pp.
837
848
.
12.
Hunter
,
S. D.
, and
Manwaring
,
S. R.
, 2000, “
Endwall Cavity Flow Effects on Gas Path Aerodynamics in an Axial Flow Turbine: Part 1—Experimental and Numerical Investigation
,” ASME Paper No. 2000-GT-651.
13.
Vakili
,
A. D.
,
Meganathan
,
A. J.
,
Michaud
,
M.
, and
Radhakrishnan
,
S.
, 2005, “
An Experimental and Numerical Study of Labyrinth Seal Flow
,” ASME Paper No. GT2005-68224.
14.
Rhode
,
D. L.
,
Johnson
,
J. W.
, and
Broussard
,
D. H.
, 1997, “
Flow Visualization and Leakage Measurements of Stepped Seals: Part 1—Annular Groove
,”
ASME J. Turbomach.
,
119
, p.
839
-
848
.
15.
Rhode
,
D. L.
,
Johnson
,
J. W.
, and
Broussard
,
D. H.
, 1997, “
Flow Visualization and Leakage Measurements of Stepped Seals: Part 2—Sloping Surfaces
,”
ASME J. Turbomach.
,
119
, pp.
844
848
.
16.
Curtis
,
M. E.
,
Denton
,
D. J.
,
Longley
,
P. J.
, and
Budimir
,
R.
, 2009, “
Controlling Tip Leakage Flow Over a Shrouded Turbine Rotor Using an Air-Curtain
,” ASME Paper No. GT2009-59411.
17.
Schlienger
,
J.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2004, “
Vortex-Wake-Blade Interaction in a Shrouded Axial Turbine
,” ASME Paper No. GT-2004-53915.
18.
Pfau
,
A.
,
Schlienger
,
J.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2003, “
Unsteady Flow Interactions within the Inlet Cavity of a Turbine Rotor Tip Labyrinth Seal
,” ASME Paper No. GT2003-38271.
19.
Pfau
,
A.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2004, “
Making use of Labyrinth Interaction Flow
,” ASME Paper No. GT2004-53797.
20.
Schlienger
,
J.
,
Pfau
,
A.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2003, “
Effects of Labyrinth Seal Variation on Multistage Axial Turbine Flow
,” ASME Paper No. GT2003-38270.
21.
Tashima
,
T.
,
Sasaki
,
T.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2007, “
Blade Loading Influence on Unsteady Flow Interactions in Axial Steam Turbines
,” ASME Paper No. GT2007-27452.
22.
Pfau
,
A.
,
Schlienger
,
J.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2003, “
Unsteady, 3-Dimensional Flow Measurement using a Miniature Virtual 4-sensor Fast Response Aerodynamic Probe (FRAP)
,” ASME Paper No. GT2003-38128.
23.
Lenherr
,
C.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2007, “
A Flow Adaptive Aerodynamic Probe Concept For Turbomachinery
,”
Meas. Sci. Technol.
,
18
, pp.
2599
2608
.
You do not currently have access to this content.