This paper presents a model for the evaluation of energy performance and aerodynamic forces acting on a small helical Darrieus vertical axis wind turbine depending on blade inclination angle. It consists of an analytical code coupled to a solid modeling software capable of generating the desired blade geometry depending on the desired design geometric parameters, which is linked to a finite volume CFD code for the calculation of rotor performance. After describing and validating the model with experimental data, the results of numerical simulations are proposed on the bases of five machine architectures, which are characterized by an inclination of the blades with respect to the horizontal plane in order to generate a phase shift angle between lower and upper blade sections of 0 deg, 30 deg, 60 deg, 90 deg, and 120 deg for a rotor having an aspect ratio of 1.5. The effects of blade inclination on tangential and axial forces are first discussed and then the overall rotor torque is considered as a function of azimuthal position of the blades. Finally, the downstream tip recirculation zone due to the finite blade extension is analyzed for each blade inclination angle, achieving a numerical quantification of the influence of induced drag on rotor performance, as a function of both blade element longitudinal and azimuthal positions of the blade itself.

1.
Templin
,
R. J.
, 1974, “
Aerodynamic Theory for the NRC Vertical-Axis Wind Turbine
,”
NRC of Canada
, Report No. TR LTR-LA-160.
2.
Strickland
,
J. H.
, “
The Darrieus Turbine: A Performance Prediction Model Using Multiple Streamtube
,” SAND75-0431.
3.
Oler
,
J. W.
,
Strickland
,
J. H.
,
Im
,
B. J.
, and
Graham
,
G. H.
, “
Dynamic Stall Regulation of the Darrieus Turbine
,” SAND83-7029.
4.
Allet
,
A.
, and
Paraschivoiu
,
I.
, 1995, “
Viscous Flow and Dynamic Stall Effects on Vertical-Axis Wind Turbines
,”
Int. J. Rotating Mach.
1023-621X,
2
(
1
), pp.
1
14
.
5.
Brahimi
,
M. T.
,
Allet
,
A.
, and
Paraschivoiu
,
I.
, 1995, “
Aerodynamic Analysis Models for Vertical-Axis Wind Turbines
,”
Int. J. Rotating Mach.
1023-621X,
2
(
1
), pp.
15
21
.
6.
Masson
,
C.
,
Leclerc
,
C.
, and
Paraschivoiu
,
I.
, 1998, “
Appropriate Dynamic-Stall Models for Performance Predictions of VAWT With NLF Blades
,”
Int. J. Rotating Mach.
1023-621X,
4
(
2
), pp.
129
139
.
7.
Paraschivoiu
,
I.
, 2002,
Wind Turbine Design: With Emphasis on Darrieus Concept
,
Polytechnic International Press
,
Montreal
.
8.
Mertens
,
S.
,
van Kuik
,
G.
,
van Bussel
,
G.
, “
Performance of a High Tip Speed Ratio H-Darrieus in the Skewed Flow on a Roof
,” Paper No. AIAA-2003-0523.
9.
Stathopoulos
,
T.
, 2004, “
Wind Effects on People
,”
Proceedings of the International Conference on Urban Wind Engineering and Building Aerodynamics—Impact of Wind Storm on City Life and Built Environment
, COST Action C14, von Karman Institute, Rhode-Saint-Genèse, Belgium.
10.
Jensen
,
A. G.
,
Franke
,
J.
,
Hirsch
,
C.
,
Schatzmann
,
M.
,
Stathopoulos
,
T.
,
Wisse
,
J.
, and
Wright
,
N. G.
, 2004, “
CFD Techniques—Computational Wind Engineering
,”
Proceedings of the International Conference on Urban Wind Engineering and Building Aerodynamics—Impact of Wind and Storm on City Life and Built Environment—Working Group 2
, COST Action C14, von Karman Institute, Rhode-Saint-Genèse, Belgium.
11.
Simao Ferreira
,
C. J.
,
Bijl
,
H.
,
van Bussel
,
G.
, and
van Kuik
,
G.
, 2007, “
Simulatine Dynamic Stall in a 2D VAWT: Modeling Strategy, Verification and Validation With Particle Image Velocimetry Data
,”
The Science of Making Torque from Wind, Journal of Physics: Conference Series 75
.
12.
Simao Ferreira
,
C. J.
,
van Bussel
,
G.
,
Scarano
,
F.
, and
van Kuik
,
G.
, 2007, “
2D PIV Visualization of Dynamic Stall on a Vertical Axis Wind Turbine
,”
AIAA
,
Reston, VA
.
13.
Raciti Castelli
,
M.
,
Pavesi
,
G.
,
Battisti
,
L.
,
Benini
,
E.
,
Ardizzon
,
G.
, 2010, “
Modeling Strategy and Numerical Validation for a Darrieus Vertical Axis Micro-Wind Turbine
,” ASME Paper No. IMECE2010-39548.
14.
Cummings
,
R. M.
,
Forsythe
,
J. R.
,
Morton
,
S. A.
, and
Squires
,
K. D.
, 2003, “
Computational Challenges in High Angle of Attack Flow Prediction
,”
Prog. Aerosp. Sci.
0376-0421,
39
(
5
), pp.
369
384
.
15.
Spalart
,
P. R.
, 1994, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerosp.
0034-1223,
1
, pp.
5
21
.
16.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
(
8
), pp.
1598
.
17.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
,
DCW Industries Inc.
,
La Canada, CA
.
18.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T. J.
, 1997, “
Turbulence Modeling Validation, Testing and Development
,”
NASA
, Technical Report 110446.
You do not currently have access to this content.