The independent influences of vane trailing edge and purge cooling are studied in detail for a one-and-one-half stage transonic high-pressure turbine operating at design-corrected conditions. This paper builds on the conclusions of Part I, which investigated the combined influence of all cooling circuits. Heat-flux measurements for the airfoil, platform, tip, and root of the turbine blade, as well as the shroud and the vane side of the purge cavity, are used to track the influence of cooling flow. By independently varying the coolant flow rate through the vane trailing edge or purge circuit, the region of influence of each circuit can be isolated. Vane trailing edge cooling is found to create the largest reductions in blade heat transfer. However, much of the coolant accumulates on the blade suction surface and little influence is observed for the pressure surface. In contrast, the purge cooling is able to cause small reductions in heat transfer on both the suction and pressure surfaces of the airfoil. Its region of influence is limited to near the hub, but given that the purge coolant mass flow rate is 1/8 that of the vane trailing edge, it is impressive that any impact is observed at all. The cooling contributions of these two circuits account for nearly all of the cooling reductions observed for all three circuits in Part I, indicating that the vane inner cooling circuit that feeds most of the vane film-cooling holes has little impact on the downstream blade heat transfer. Time-accurate pressure measurements provide further insight into the complex interactions in the purge region that govern purge coolant injection. While the pressures supplying the purge coolant and the overall coolant flow rate remain fairly constant, the interactions of the vane pressure field and the rotor pressure field create moving regions of high pressure and low pressure at the exit of the cavity. This results in pulsing regions of injection and ingestion.

1.
Langston
,
L. S.
, 2001, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
11
26
.
2.
Simon
,
T. W.
, and
Piggush
,
J. D.
, 2006, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
J. Propul. Power
0748-4658,
22
(
2
), pp.
301
312
.
3.
Dunham
,
J.
, 1970, “
A Review of Cascade Data on Secondary Losses in Turbines
,”
J. Mech. Eng. Sci.
0022-2542,
12
(
1
), pp.
48
59
.
4.
Herzig
,
H. Z.
,
Hansen
,
A. G.
, and
Costello
,
G. R.
, 1953, “
A Visualization Study of Secondary Flows in Cascades
,” NACA Report No. 1163.
5.
Blair
,
M. F.
, 1974, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
0022-1481,
9
, pp.
524
529
.
6.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
, 1977, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Power
0022-0825,
99
, pp.
21
28
.
7.
Langston
,
L. S.
, 1980, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
866
874
.
8.
Sharma
,
O. P.
, and
Butler
,
T. L.
, 1987, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
0889-504X,
109
, pp.
229
236
.
9.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1996, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonica and Diazo Technique
,”
ASME J. Turbomach.
0889-504X,
118
(
4
), pp.
613
621
.
10.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1997, “
Aerodynamic Aspects of Endwall Film-Cooling
,”
ASME J. Turbomach.
0889-504X,
119
(
4
), pp.
786
793
.
11.
Wright
,
L. M.
,
Blake
,
S. A.
, and
Han
,
J. C.
, 2008, “
Film Cooling Effectiveness Distributions on a Turbine Blade Cascade Platform With Stator-Rotor Purge and Discrete Film Hole Flows
,”
ASME J. Turbomach.
0889-504X,
130
, p.
031015
.
12.
Wright
,
L. M.
,
Blake
,
S. A.
,
Rhee
,
D. H.
, and
Han
,
J. C.
, 2007, “
Effect of Upstream Wake With Vortex on Turbine Blade Platform Film Cooling With Simulated Stator-Rotor Purge Flow
,”
ASME J. Turbomach.
0889-504X,
131
(
2
), p.
021017
.
13.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
, 2006, “
The Effect of Stator-Rotor Hub Sealing Flow on the Mainstream Aerodynamics of a Turbine
,” ASME Paper No. GT2006-T90838.
14.
Demargne
,
A. A. J.
, and
Longley
,
J. P.
, 2000, “
The Aerodynamic Interaction of Stator Shroud Leakage and Mainstream Flows in Compressors
,”
ASME
Paper No. 2000-GT-570.
15.
Hunter
,
S. D.
, and
Manwaring
,
S. R.
, 2000, “
Endwall Cavity Flow Effects on Gaspath Aerodynamics in an Axial Flow Turbine: Part I-Experimental and Numerical Investigation
,”
ASME
Paper No. 2000-GT-651.
16.
McLean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
, 2001, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage—Part I: Aerodynamic Measurements in the Stationary Frame
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
687
696
.
17.
McLean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
, 2001, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage—Part II: Aerodynamic Measurements in the Rotational Frame
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
697
703
.
18.
Paniagua
,
G.
,
Denos
,
R.
, and
Almeida
,
S.
, 2004, “
Effect of the Hub Endwall Cavity Flow on the Flow-Field of a Transonic High-Pressure Turbine
,”
ASME J. Turbomach.
0889-504X,
126
(
4
), pp.
578
586
.
19.
Blair
,
M. F.
, 1994, “
An Experimental Study of Heat Transfer in a Large-Scale Turbine Rotor Passage
,”
ASME J. Turbomach.
0889-504X,
116
(
1
), pp.
1
13
.
20.
Dunn
,
M. G.
and
Haldeman
,
C. W.
, 2000, “
Time-Averaged Heat Flux for a Recessed Tip, Lip and Platform of a Transonic Turbine Blade
,”
ASME
Paper No. 2000-GT-0197.
21.
Bergholz
,
R. F.
,
Dunn
,
M. G.
, and
Steuber
,
G. D.
, 2000, “
Rotor/Stator Heat Transfer Measurements and CFD Predictions for Short-Duration Turbine Rig Tests
,”
ASME
Paper No. 2000-GT-0208.
22.
Suryanarayanan
,
A.
,
Mhetras
,
S. P.
,
Schobeiri
,
M. T.
and
Han
,
J. C.
, 2009, “
Film-Cooling Effectiveness on a Rotating Blade Platform
,”
ASME J. Turbomach.
0889-504X,
131
, p.
011014
.
23.
Suryanarayanan
,
A.
,
Ozturk
,
B.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
, 2007, “
Film-Cooling Effectiveness on a Rotating Turbine Platform Using Pressure Sensitive Paint Technique
,” ASME Paper No. GT2007-GT27122.
24.
Yang
,
H.
,
Gao
,
Z.
,
Chen
,
H. C.
,
Han
,
J. C.
, and
Schobeiri
,
M. T.
, 2007, “
Prediction of Film Cooling and Heat Transfer on a Rotating Blade Platform With Stator-Rotor Purge and Discrete Film-Hole Flows in a 1-1/2 Turbine Stage
,” ASME Paper No. GT2007-GT27069.
25.
Pau
,
M.
,
Paniagua
,
G.
,
Delhaye
,
D.
,
de la Loma
,
A.
, and
Ginibre
,
P.
, 2008, “
Aerothermal Impact of Stator-Rim Purge Flow and Rotor-Platform Film Cooling on a Transonic Turbine Stage
,” ASME Paper No. GT2008-T51295.
26.
Sieverding
,
C. H.
,
Arts
,
T.
,
Denos
,
R.
and
Martelli
,
F.
, 1996, “
Investigation of the Flow Field Downstream of a Turbine Trailing Edge Cooled Nozzle Guide Vane
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
291
300
.
27.
Kapteijn
,
C.
,
Amecke
,
J.
, and
Michelassi
,
V.
, 1996, “
Aerodynamic Performance of a Transonic Turbine Guide Vane With Trailing Edge Coolant Ejection—Part I: Experimental Approach
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
519
528
.
28.
Day
,
C. R. B.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
, 2000, “
Aerodynamic Performance of an Annular Cascade of Film Cooled Nozzle Guide Vanes Under Engine Representative Conditions
,”
Exp. Fluids
0723-4864,
29
, pp.
117
129
.
29.
Jenkins
,
S. C.
, and
Bogard
,
D. G.
, 2007, “
Scaling of Guide Vane Coolant Profiles and the Reduction of a Simulated Hot Streak
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
619
627
.
30.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
, 2010, “
Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine–Part I: Vane Inlet Temperature Profile Generation and Migration
,” ASME Paper No. GT2010-T22716.
31.
Wang
,
C. Z.
,
Johnson
,
B. V.
,
De Jong
,
F.
, and
Vashist
,
T. K.
, 2007, “
Comparison of Flow Characteristics in Axial-Gap Seals for Close- and Wide-Spaced Turbine Stages
,” ASME Paper No. GT2007-T27909.
32.
Johnson
,
B. V.
,
Jakoby
,
R.
,
Bohn
,
D. E.
, and
Cunat
,
D.
, 2006, “
A Method for Estimating the Influence of Time-Dependent Vane and Blade Pressure Fields on Turbine Rim Seal Ingestion
,” ASME Paper No. GT2006-GT90853.
You do not currently have access to this content.