This paper experimentally investigates the effect of high freestream turbulence intensity, turbulence length scale, and exit Reynolds number on the surface heat transfer distribution of a turbine blade at realistic engine Mach numbers. Passive turbulence grids were used to generate freestream turbulence levels of 2%, 12%, and 14% at the cascade inlet. The turbulence grids produced length scales normalized by the blade pitches of 0.02, 0.26, and 0.41, respectively. Surface heat transfer measurements were made at the midspan of the blade using thin film gauges. Experiments were performed at the exit Mach numbers of 0.55, 0.78, and 1.03, which represent flow conditions below, near, and above nominal conditions. The exit Mach numbers tested correspond to exit Reynolds numbers of 6×105, 8×105, and 11×105, based on true chord. The experimental results showed that the high freestream turbulence augmented the heat transfer on both the pressure and suction sides of the blade as compared with the low freestream turbulence case. At nominal conditions, exit Mach 0.78, average heat transfer augmentations of 23% and 35% were observed on the pressure side and suction side of the blade, respectively.

1.
Zimmermann
,
D. B.
, 1979, “
Laser Anemometer Measurements at the Exit of a T63-C20 Combustor
,”
NASA
Report No. CR-159623.
2.
Van Fossen
,
G. J.
, and
Bunker
,
R. S.
, 2001, “
Augmentation of Stagnation Heat Transfer Due to Turbulence From a DLN Can Combustor
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
140
146
.
3.
Consigny
,
H.
, and
Richards
,
B. E.
, 1982, “
Short Duration Measurements of Heat-Transfer Rate to a Gas Turbine Rotor Blade
,”
ASME J. Eng. Power
0022-0825,
104
, pp.
542
551
.
4.
Arts
,
T.
,
Duboue
,
J. M.
, and
Rollin
,
G.
, 1998, “
Aerothermal Performance Measurements and Analysis of a Two-Dimensional High Turning Rotor Blade
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
494
499
.
5.
Giel
,
P. W.
,
Boyle
,
R. J.
, and
Bunker
,
R. S.
, 2004, “
Measurements and Predictions of Heat Transfer on Rotor Blades in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
110
121
.
6.
Holmberg
,
D. G.
, and
Diller
,
T. E.
, 2005, “
Simultaneous Heat Flux and Velocity Measurements in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
502
506
.
7.
Nix
,
A. C.
,
Diller
,
T. E.
, and
Ng
,
W. F.
, 2007, “
Experimental Measurements and Modeling of the Effects of Large-Scale Freestream Turbulence on Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
542
550
.
8.
Smith
,
D. E.
,
Bubb
,
J. V.
,
Popp
,
O.
,
Grabowski
,
H. C.
,
Diller
,
T. E.
,
Schetz
,
J. A.
, and
Ng
,
W. F.
, 2000, “
Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade, Part I: Steady Heat Transfer
,” ASME Paper No. 2000-GT-202.
9.
Popp
,
O.
,
Smith
,
D. E.
,
Bubb
,
J. V.
,
Grabowski
,
H. C.
,
Diller
,
T. E.
,
Schetz
,
J. A.
, and
Ng
,
W. F.
, 2000, “
Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade, Part II: Unsteady Heat Transfer
,” ASME Paper No. 2000-GT-203.
10.
Schultz
,
D. L.
, and
Jones
,
T. V.
, 1973, “
Heat Transfer Measurements in Short Duration Hypersonic Facilities
,” AGARD Paper No. AG-165.
11.
Doorly
,
J. E.
, and
Oldfield
,
M. L. G.
, 1987, “
The Theory of Advanced Multi-Layer Thin Film Heat Transfer Gages
,”
Int. J. Heat Mass Transfer
0017-9310,
30
, pp.
1159
1168
.
12.
Dunn
,
M. G.
, 1995, “
The Platinum Thin-Film Gauge
,”
Measurement Techniques II
(
VKI Lecture Series
No. 1995-01),
von Karman Institute for Fluid Dynamics
,
Rhode Saint Genese, Belgium
.
13.
Joe
,
C. R.
, 1997, “
Unsteady Heat Transfer on the Turbine Research Facility at Wright Laboratory
,” Ph.D. thesis, Syracuse University, Syracuse, NY.
14.
Cress
,
R. D.
, 2006, “
Turbine Blade Heat Transfer Measurements in a Transonic Flow Using Thin Film Gages
,” MS thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
15.
Moffat
,
R. J.
, 1988, “
Describing Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
16.
Baines
,
W. D.
, and
Peterson
,
E. G.
, 1951, “
An Investigation of Flow Through Screens
,”
Trans. ASME
0097-6822,
73
, pp.
467
480
.
17.
Nix
,
A. C.
,
Smith
,
A. C.
,
Diller
,
T. E.
,
Ng
,
W. F.
and
Thole
,
K. A.
, 2002, “
High Intensity, Large Length-Scale Freestream Turbulence Generation in a Transonic Turbine Cascade
,” ASME Paper No. GT-2002-30523.
18.
Roach
,
P. E.
, 1987, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
0142-727X,
8
(
2
), pp.
82
92
.
19.
Jones
,
W. P.
, and
Launder
,
B. E.
, 1972, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
301
314
.
20.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
509
537
.
21.
Zhang
,
J.
, and
Han
,
J. -C.
, 1994, “
Influence of Mainstream Turbulence on Heat Transfer Coefficient From a Gas Turbine Blade
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
896
903
.
22.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
, 5th ed.,
Wiley
,
New York
.
23.
Van Fossen
,
G. J.
,
Simoneau
,
R. J.
, and
Ching
,
C. Y.
, 1995, “
Influence of Turbulence Parameters, Reynolds Number, and Body Shape on Stagnation-Region Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
597
603
.
24.
Crawford
,
M. E.
, 1986, “
Simulation Codes for Calculation of Heat Transfer to Convectively-Cooled Turbine Blades
,”
Convective Heat Transfer and Film Cooling in Turbomachinery
(
VKI Lecture Series
No. 1986-06),
von Karman Institute for Fluid Dynamics
,
Rhode Saint Genese, Belgium
.
You do not currently have access to this content.