This paper describes a new flow mechanism for the reduction in secondary flows in low pressure turbines using the benefit of contoured endwalls. The extensive application of contoured endwalls in recent years has provided a deeper understanding of the physical phenomenon that governs the reduction in secondary flows. Based on this understanding, the endwall geometry of a linear cascade of solid-thin profiles typical of low pressure turbines has been redesigned. Experimental data are presented for the validation of this new solution. Based on these data, a reduction of 72% in the secondary kinetic energy helicity (SKEH) and 20% in the mixed-out endwall losses can be obtained. Computational fluid dynamics simulations are also presented to illustrate the effect of the new endwall on the secondary flows. Furthermore, an explanation of the flow mechanism that governs the reduction in the SKEH, and the losses is given.

1.
Sieverding
,
C. H.
, 1985, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in a Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
(
2
), pp.
248
257
.
2.
Gregory-Smith
,
F. G.
, 1997, “
Secondary and Tip-Clearance Flows in Axial Turbines
,” von Karman Institute for Fluid Dynamics, Paper No. VKI LS 1997-01.
3.
Langston
,
L. S.
, 2001, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N. Y. Acad. Sci.
,
934
, pp.
11
26
.
4.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
, 2000, “
Nonaxisymmetric Turbine End Wall Design: Part I—Three Dimensional Linear Design System
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
278
285
.
5.
Hartland
,
J.
,
Gregory-Smith
,
D. G.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
, 2000, “
Nonaxisymmetric Turbine End Wall Design: Part II—Experimental Validation
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
286
293
.
6.
Ingram
,
G. L.
,
Gregory-Smith
,
D. G.
,
Rose
,
M. G.
,
Harvey
,
N. W.
, and
Brennan
,
G.
, 2002, “
The Effect of End-Wall Profiling on Secondary Flow and Loss Development in a Turbine Cascade
,” ASME Paper No. GT-2002-30339.
7.
Weiss
,
A. P.
, and
Fottner
,
L.
, 1995, “
The Influence of Load Distribution on Secondary Flow in Straight Turbine Cascades
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
133
141
.
8.
de la Rosa Blanco
,
E.
,
Hodson
,
H. P.
,
Vazquez
,
R.
, and
Torre
,
D.
, 2003, “
Influence of the State of the Inlet Endwall Boundary Layer on the Interaction Between the Pressure Surface Separation and the Endwall Flows
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
217
, pp.
413
420
.
9.
de la Rosa Blanco
,
E.
,
Hodson
,
H. P.
, and
Vazquez
,
R.
, 2005, “
Effect of Upstream Platform Geometry on the Endwall Flows of a Turbine Cascade
,” ASME Paper No. GT2005-68938.
10.
Sauer
,
H.
,
Muller
,
R.
, and
Vogeller
,
K.
, 2000, “
Reduction of Secondary Flows Losses in Turbine Cascades by Leading Edge Modifications at the End-Wall
,” ASME Paper No. 2000-GT-0473.
11.
Zess
,
G. A.
, and
Thole
,
K. A.
, 2002, “
Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
167
175
.
12.
Corral
,
R.
,
Crespo
,
J.
, and
Gisbert
,
F.
, 2004, “
Parallel Multigrid Unstructured Method for the Solution of the Navier-Stokes Equations
,”
Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV.
13.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
, 1988, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
110
, pp.
1
8
.
You do not currently have access to this content.