Experiments and numerical computations are performed to investigate the convective heat transfer characteristics of a gas turbine can combustor under cold flow conditions in a Reynolds number range between 50,000 and 500,000 with a characteristic swirl number of 0.7. It is observed that the flow field in the combustor is characterized by an expanding swirling flow, which impinges on the liner wall close to the inlet of the combustor. The impinging shear layer is responsible for the peak location of heat transfer augmentation. It is observed that as Reynolds number increases from 50,000 to 500,000, the peak heat transfer augmentation ratio (compared with fully developed pipe flow) reduces from 10.5 to 2.75. This is attributed to the reduction in normalized turbulent kinetic energy in the impinging shear layer, which is strongly dependent on the swirl number that remains constant at 0.7 with Reynolds number. Additionally, the peak location does not change with Reynolds number since the flow structure in the combustor is also a function of the swirl number. The size of the corner recirculation zone near the combustor liner remains the same for all Reynolds numbers and hence the location of shear layer impingement and peak augmentation does not change.

1.
Chin
,
J.
,
Skirvin
,
S.
,
Hayes
,
L.
, and
Burggraf
,
F.
, 1961, “
Film Cooling With Multiple Slots and Louvers—Part 1: Multiple Continuous Slots
,”
ASME J. Heat Transfer
0022-1481,
83
, pp.
281
286
.
2.
Metzger
,
D. E.
,
Takeuchi
,
D.
, and
Kuenstler
,
P.
, 1973, “
Effectiveness and Heat Transfer With Full-Coverage Film Cooling
,”
ASME J. Eng. Power
0022-0825,
95
, pp.
180
184
.
3.
Andrews
,
G. E.
,
Khalifa
,
I. M.
,
Asere
,
A. A.
, and
Bazdidi-Tehrani
,
F.
, 1995, “
Full Coverage Effusion Film Cooling With Inclined Holes
,” ASME Paper No. 95-GT-274.
4.
Fric
,
T. F.
,
Campbell
,
R. P.
, and
Rettig
,
M. G.
, 1997, “
Quantitative Visualization of Full-Coverage Discrete-Hole Film Cooling
,” ASME Paper No. 97-GT-328.
5.
Schulz
,
A.
, 2001, “
Combustor Liner Cooling Technology in Scope of Reduced Pollutant Formation and Rising Thermal Efficiencies
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
135
146
.
6.
Arellano
,
L.
,
Smith
,
K.
, and
Fahme
,
A.
, 2001, “
Combined Back Side Cooled Combustor Liner and Variable Geometry Injector Technology
,” ASME Paper No. 2001-GT-0086.
7.
Smith
,
K.
, and
Fahme
,
A.
, 1999, “
Backside Cooled Combustor Liner for Lean-Premixed Combustion
,” ASME Paper No. 99-GT-239.
8.
Gore
,
R. W.
, and
Ranz
,
W. E.
, 1964, “
Backflow in Rotating Fluids Moving Axially Through Expanding Cross Sections
,”
AIChE J.
0001-1541,
10
, pp.
83
88
.
9.
Chigier
,
N. A.
, and
Chervinsky
,
A.
, 1967, “
Experimental Investigation of Swirling Vortex Motion in Jets
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
34
, pp.
443
450
.
10.
Brum
,
R. D.
, and
Samuelson
,
G. S.
, 1987, “
Two-Component Laser Anemometry Measurements of Non-Reacting and Reacting Complex Flows in a Swirl-Stabilized Model Combustor
,”
Exp. Fluids
0723-4864,
5
, pp.
95
102
.
11.
Vu
,
B. T.
, and
Gouldin
,
F. C.
, 1982, “
Flow Measurement in a Model Swirl Combustor
,”
AIAA J.
0001-1452,
20
(
5
), pp.
642
651
.
12.
Rhode
,
D. L.
,
Lilley
,
D. G.
, and
McLaughlin
,
D. K.
, 1983, “
Mean Flowfields in Axisymmetric Combustor Geometries With Swirl
,”
AIAA J.
0001-1452,
21
(
4
), pp.
593
600
.
13.
Ferrell
,
G. B.
,
Abujelala
,
M. T.
,
Busnaina
,
A. A.
, and
Lilley
,
D. G.
, 1984, “
Lateral Jet Injection Into Typical Combustor Flowfields
,”
AIAA 22nd Aerospace Sciences Meeting
, Reno, NV, Jan., AIAA Paper No. 84-0374.
14.
Bailey
,
J. C.
,
Intile
,
J.
,
Fric
,
T. F.
,
Tolpadi
,
A. K.
,
Nirmalan
,
N. V.
, and
Bunker
,
R. S.
, 2003, “
Experimental and Numerical Study of Heat Transfer in a Gas Turbine Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
994
1002
.
15.
Thundil Karuppa Raj
,
R.
, and
Ganesan
,
V.
, 2008, “
Study on the Effect of Various Parameters on Flow Development Behind Vane Swirlers
,”
Int. J. Therm. Sci.
1290-0729,
47
, pp.
1204
1225
.
16.
Fernando
,
F.
,
Grinstein
,
T.
,
Young
,
R.
,
Gutmark
,
E. J.
,
Li
,
G.
,
Hsiao
,
G.
, and
Mongia
,
H. C.
, 2002, “
Flow Dynamics in a Swirl Combustor
,”
ASME J. Turbomach.
0889-504X,
3
, p.
30
.
17.
Grinstein
,
F.
, and
Fureby
,
C.
, 2005, “
LES Studies of the Flow in a Swirl Gas Combustor
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
1791
1798
.
18.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
19.
Fluent Inc.
, 2007, “
FLUENT 6.3 User’s Guide
.”
20.
Lilley
,
D. G.
, 1999, “
Annular Vane Swirler Performance
,”
J. Propul. Power
0748-4658,
15
, pp.
248
252
.
21.
Goh
,
Y.
, 2006, “
Heat Transfer and Flow Characteristics Inside a Gas Turbine Combustor
,” MS thesis, Department of Mechanical Engineering, Louisiana State University, Louisiana.
You do not currently have access to this content.