As a part of an innovative aerodynamic design concept for a single stage low pressure turbine, a high turning outlet guide vane is required to remove the swirl from the hot gas. The airfoil of the vane is a highly loaded compressor airfoil that has to operate at very low Reynolds numbers (Re120,000). Recently published numerical design studies and experimental analysis on alternatively designed airfoils showed that blade profiles with an extreme front loaded pressure distribution are advantageous for low Reynolds number conditions. The advantage even holds true for an increased inlet Mach number at which the peak Mach number on the airfoils reaches and exceeds the critical conditions (Mss>1.0). This paper discusses the effect of the inlet Mach number and Reynolds number on the cascade performance for both a controlled diffusion airfoil (CDA) (called baseline) and a numerically optimized front loaded airfoil. The results show that it is advantageous to design the profile with a fairly steep pressure gradient immediately at the front part in order to promote early transition or to prevent too large laminar—even shock induced—separations with the risk of a bubble burst. Profile Mach number distributions and wake traverse data are presented for design and off-design conditions. The discussion of Mach number distributions and boundary layer behavior is supported by numerical results obtained from the blade-to-blade flow solver MISES.

1.
Wisler
,
D. C.
, 1998, “
The Technical and Economic Relevance of Understanding Boundary Layer Transition in Gas Turbine Engines
,” Minnowbrook II, 1997 Workshop on Boundary Layer Transition in Turbomachines, NASA/CP-1998-206958, pp.
53
64
.
2.
Ashpis
,
D.
, 1998, “
The NASA Low-Pressure Turbine Flow Physics Program
,” Minnowbrook II, 1997 Workshop on Boundary Layer Transition in Turbomachines, NASA/CP-1998-206958, pp.
45
52
.
3.
Lou
,
W.
, and
Hourmouziadis
,
J.
, 2000, “
Separation Bubbles Under Steady and Periodic-Unsteady Main Flow Conditions
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
634
643
.
4.
Volino
,
R.
, and
Hultgren
,
L. S.
, 2001, “
Measurements in Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
189
197
.
5.
Howell
,
R. J.
,
Ramesh
,
O. N.
,
Hodson
,
H. P.
,
Harvey
,
N. W.
, and
Schulte
,
V.
, 2001, “
High Lift and Aft-Loaded Profiles for Low-Pressure Turbines
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
181
188
.
6.
Haselbach
,
F.
,
Schiffer
,
H. P.
,
Horsman
,
M.
,
Dressen
,
S.
,
Harvey
,
N.
, and
Read
,
S.
, 2002, “
The Application of Ultra-High-Lift Blading in the BR715 LP Turbine
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
45
51
.
7.
Rhoden
,
H. G.
, 1952, “
Effects of Reynolds Number on the Flow of Air through a Cascade of Compressor Blades
,” ARC, R&M No. 2919.
8.
Roberts
,
W. B.
1975, “
The Effect of Reynolds Number and Laminar Separation on Axial Cascade Performance
,”
ASME J. Eng. Power
0022-0825,
97
, pp.
261
274
.
9.
Citavy
,
J.
, and
Jilek
,
J.
, 1990, “
The Effect of Low Reynolds Number on Straight Compressor Cascades
,” ASME Paper No. 90-GT-221.
10.
Hobbs
,
D. E.
, and
Weingold
,
H. D.
, 1984, “
Development of Controlled Diffusion Airfoils for Multistage Compressor Application
,”
J. Eng. Gas Turbines Power
0742-4795,
106
, pp.
271
278
.
11.
Köller
,
U.
,
Mönig
,
R.
,
Küsters
,
B.
, and
Schreiber
,
H. A.
, 2000, “
Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines, Part 1: Design and Optimization
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
397
405
.
12.
Schreiber
,
H. A.
,
Steinert
,
W.
, and
Küsters
,
B.
, 2002, “
Effect of Reynolds Number and Free-Stream Turbulence on Boundary Layer Transition in a Compressor Cascade
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
1
9
.
13.
Sieverding
,
F.
,
Ribi
,
B.
,
Casey
,
M.
, and
Meyer
,
M.
, 2004, “
Design of Industrial Axial Compressor Blade Sections for Optimal Range and Performance
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
323
331
.
14.
Sonoda
,
T.
,
Yamaguchi
,
Y.
,
Arima
,
T.
,
Olhofer
,
M.
,
Sendhoff
,
B.
, and
Schreiber
,
H. A.
, 2004, “
Advanced High Turning Compressor Airfoils for Low Reynolds Number Condition, Part 1: Design and Optimization
,”
ASME J. Turbomach.
0889-504X,
126
(
3
), pp.
350
359
.
15.
Schreiber
,
H. A.
,
Steinert
,
W.
,
Sonoda
,
T.
, and
Arima
,
T.
, 2004, “
Advanced High Turning Compressor Airfoils for Low Reynolds Number Condition, Part 2: Experimental and Numerical Analysis
,”
ASME J. Turbomach.
0889-504X,
126
(
4
), pp.
482
492
.
16.
Olhofer
,
M.
,
Arima
,
T.
,
Sonoda
,
T.
,
Fischer
,
M.
, and
Sendhoff
,
B.
, 2001, “
Aerodynamic Shape Optimization Using Evolution Strategies
,” in
Optimization in Industry III
,
Springer Verlag
.
17.
Arima
,
T.
,
Sonoda
,
T.
,
Shiratori
,
M.
,
Tamura
,
A.
, and
Kikuchi
,
K.
, 1999, “
A Numerical Investigation of Transonic Axial Compressor Rotor Flow Using a Low Reynolds number k-ε Turbulence Model
,”
ASME J. Turbomach.
0889-504X,
121
(
1
), pp.
44
58
.
18.
Drela
,
M.
, and
Youngren
,
H.
, 1991, “
Viscous/Inviscid Method for Preliminary Design of Transonic Cascades
,” AIAA-Paper No. 91-2364, Sacramento, CA.
19.
Drela
,
M.
, 1995, “
Implementation of Modified Abu Ghannam Shaw Transition Criterion
,”
MISES User’s Guide
,
MIT, Computational Aerospace Science Lab.
, Cambridge, MA.
20.
Schlichting
,
H.
, and
Das
,
A.
, 1970, On the Influence of Turbulence Level on the Aerodynamic Losses of Axial Turbomachines,”
Dzung, Flow Research on Blading
,
Elsevier
, Amsterdam, pp.
243
268
.
21.
Citavy
,
J.
, and
Norbury
,
J. F.
, 1977, “
The Effect of Reynolds Number and Turbulence Intensity on the Performance of a Compressor Cascade with Prescribed Velocity Distribution
,”
J. Mech. Eng. Sci.
0022-2542,
19
(
3
), pp.
93
100
.
22.
Evans
,
R. L.
1978, “
Boundary Layer Development on an Axial Flow Compressor Stator Blade
,”
ASME J. Eng. Power
0022-0825,
100
, pp.
287
293
.
23.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
509
537
, 1991 GTI Scholar Lecture.
24.
Cumpsty
,
N. A.
,
Dong
,
Y.
, and
Li
,
Y. S.
, 1995, “
Compressor Blade Boundary Layers in the Presence of Wakes
,” ASME Paper No. 95-GT-443.
25.
Schreiber
,
H. A.
, and
Steinert
,
W.
, 2004, “
Experimental Investigation of Two Outlet Guide Vane Cascades—Effect of Free-Stream Turbulence on OGV-BASE and OGV-ES
,” DLR Internal Report No. 325-06-04.
You do not currently have access to this content.