The ability to predict boundary layer transition locations accurately on turbomachinery airfoils is critical both to evaluate aerodynamic performance and to predict local heat-transfer coefficients with accuracy. Here we report on an effort to include empirical transition models developed in Part I of this report in a Reynolds averaged Navier-Stokes (RANS) solver. To validate the new models, two-dimensional design optimizations utilizing transitional RANS simulations were performed to obtain a pair of low-pressure turbine airfoils with the objective of increasing airfoil loading by 25%. Subsequent experimental testing of the two new airfoils confirmed pre-test predictions of both high and low Reynolds number loss levels. In addition, the accuracy of the new transition modeling capability was benchmarked with a number of legacy cascade and low-pressure turbine (LPT) rig data sets. Good agreement between measured and predicted profile losses was found in both cascade and rig environments. However, use of the transition modeling capability has elucidated deficiencies in typical RANS simulations that are conducted to predict component performance. Efficiency-versus-span comparisons between rig data and multi-stage steady and time-accurate LPT simulations indicate that loss levels in the end wall regions are significantly under predicted. Possible causes for the under-predicted end wall losses are discussed as well as suggestions for future improvements that would make RANS-based transitional simulations more accurate.

1.
Greitzer
,
E. M.
,
Tan
,
C. S.
,
Wisler
,
D. C.
,
Adamczyk
,
J. J.
, and
Strazisar
,
A. J.
, 1994, “
Unsteady Flows in Turbomachines: Where’s the Beef?
Unsteady Flows in Aeropropulsion
, ASME AD-
40
, New York, pp.
1
11
.
2.
Hodson
,
H. P.
, 1984, “
Boundary Layer and Loss Measurements on the Rotor of an Axial-Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
, pp.
391
399
.
3.
Doorly
,
D. J.
, and
Oldfield
,
M. L. G.
, 1985, “
Simulation of Wake Passing in a Stationary Turbine Rotor Cascade
,”
AIAA J. Propulsion
, Vol.
1
(
4
), pp.
316
318
.
4.
LaGraff
,
J. E.
,
Ashworth
,
D. A.
, and
Schultz
,
D. L.
, 1989, “
Measurement and Modeling of the Gas Turbine Blade Transition Process as Disturbed by Wakes
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
315
322
.
5.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. W.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines: Part 1 of 4—Composite Picture
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
114
126
.
6.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. W.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines: Part 3 of 4—LP Turbines
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
225
237
.
7.
Wadia
,
A.
, 2003, personal communication.
8.
Sharma
,
O. P.
,
Wells
,
R. A.
,
Schlinker
,
R. H.
, and
Bailey
,
D. A.
, 1982, “
Boundary Layer Development on Airfoil Suction Surfaces
,”
ASME J. Eng. Power
0022-0825,
104
, pp.
698
706
.
9.
LaGraff
,
J. E.
, and
Ashpis
,
D. E.
, editors, 1998, “
Minnowbrook II: 1997 Workshop on Boundary Layer Transition in Turbomachines
,” NASA,
CP
-1998–
206958
.
10.
Praisner
,
T. J.
, and
Clark
,
J. P.
, 2004, “
Predicting Transition in Turbomachinery, Part I—A Review and New Model Development
,” ASME Report No. GT-2004–54108.
11.
Dorney
,
D. J.
, and
Ashpis
,
D. E.
, 1998, “
Study of Low Reynolds Number Effects on the Losses in Low-Pressure Turbine Blade Rows
,” AIAA Paper No. 98–3575.
12.
Gier
,
J.
,
Ardey
,
S.
, and
Heisler
,
A.
, 2000, “
Analysis of Complex Three-Dimensional Flow in a Three-Stage LP Turbine by Means of Transitional Navier-Stokes Simulation
,” ASME Paper No. 2000GT-645.
13.
Höhn
,
W.
, and
Heinig
,
K.
, 2000, “
Numerical and Experimental Investigation of Unsteady Flow Interaction in a Low Pressure Multistage Turbine
,” ASME Paper No. 2000-GT-437.
14.
Thermann
,
H.
,
Mueller
,
M.
, and
Niehuis
,
R.
, 2001, “
Numerical Simulation of Boundary Layer Transition in Turbomachinery Flows
,” ASME Paper No. 2001-GT-0475.
15.
Roux
,
J.
,
Lefebvre
,
M.
, and
Liamis
,
N.
, 2002, “
Unsteady and Calming Effects Investigation on a Very High Lift LP Turbine Blade—Part II: Numerical Analysis
,” ASME Paper No. GT-2002–30228.
16.
Walker
,
G. J.
,
Henderson
,
A. D.
,
Hughes
,
J. D.
, and
Coupland
,
J.
, 2003, “
Modeling of Unsteady Transitional Flow on Axial Compressor Blades
,” NASA/TM-2004-212913, p.
57
.
17.
Mayle
,
R. E.
, 1991, “
The Role of Laminar Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
509
537
.
18.
Ni
,
R. H.
, 1982, “
A Multiple-Grid Scheme for Solving the Euler Equations
,”
AIAA J.
0001-1452,
20
(
11
), pp.
1565
1571
.
19.
Ni
,
R. H.
, and
Bogoian
,
J. C.
, 1989, “
Prediction of 3-D Multistage Turbine Flowfield Using a Multiple-Grid Euler Solver
,” AIAA Paper No. 89–0203.
20.
Davis
,
R. L.
,
Shang
,
T.
,
Buteau
,
J.
, and
Ni
,
R. H.
, 1996, “
Prediction of 3-D Unsteady Flow in Multi-Stage Turbomachinery Using an Implicit Dual Time-Step Approach
,” AIAA Paper No. 96–2565.
21.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Industries
,
La Canada, CA
.
22.
Arts
,
T.
,
de Rouvroit
,
L. M.
, and
Rutherford
,
A. W.
, 1990, “
Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade
,” von Karman Institute for Fluids Dynamics Technical Note No. 174.
23.
Narasimha
,
R.
, 1985, “
The Laminar Turbulent Transition Zone in the Boundary Layer
,”
Prog. Aerosp. Sci.
0376-0421,
22
, pp.
29
80
.
24.
Narasimha
,
R.
, 1991, “
Recent Advances in the Dynamics of the Transition Zone
,” ISABE Report No. 91–7006.
25.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R.
, 2001, “
The Fluid Dynamics of LPT Blade Separation Control Using Pulsed Jets
,” ASME Paper No. 2001GT-0190.
26.
Sjolander
,
S.
, 2003, personal communication.
27.
Binder
,
A.
,
Schröder
,
T. H.
, and
Hourmouziadis
,
J.
, 1988, “
Turbulence Measurements in a Multistage Low-Pressure Turbine
,” ASME Paper No. 88-GT-79.
28.
Schlienger
,
J.
,
Pfau
,
A.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2003, “
Effects of Labyrinth Seal Variation on Multistage Axial Turbine Flow
,” ASME Paper No. GT-2003–38270.
29.
Gier
,
J.
,
Stubert
,
B.
,
Brouillet
,
B.
, and
de Vito
,
L.
, 2003, “
Interaction of Shroud Leakage Flow and Main Flow in a Three-Stage LP Turbine
,” ASME Paper No. GT2003–38025.
30.
Sharma
,
O. P.
,
Ni
,
R. H.
, and
Tanrikut
,
S.
, 1994, “
Unsteady Flows in Turbines—Impact on Design Procedure
,” in AGARD Lecture Series 195, Turbomachinery Design Using CFD.
31.
Denton
,
J. D.
, 1993, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
621
656
.
You do not currently have access to this content.