Here we report on an effort to include an empirically based transition modeling capability in a Reynolds Averaged Navier-Stokes solver. Well known empirical models for both attached- and separated-flow transition were tested against cascade data and found unsuitable for use in turbomachinery design. Consequently, a program was launched to develop models with sufficient accuracy for use in design. As a first step, accurate prediction of free stream turbulence development was identified as a prerequisite for accurate modeling. Additionally, a demonstrated capability to capture the effects of free stream turbulence on pre-transitional boundary layers became an impetus for the work. A computational fluid dynamics (CFD)-supplemented database of 104 experimental cascade cases was constructed to explore the development of new correlations. Dimensional analyses were performed to guide the work, and appropriate non-dimensional parameters were then extracted from CFD predictions of the laminar boundary layers existing on the airfoil surfaces prior to either transition onset or incipient separation. For attached-flow transition, onset was found to occur at a critical ratio of the boundary-layer diffusion time to a time scale associated with the energy-bearing turbulent eddies. In the case of separated-flow transition, it was found that the length of a separation bubble prior to turbulent reattachment was a simple function of the local momentum thickness at separation and the overall surface length traversed by a fluid element prior to separation. Both the attached- and separated-flow transition models were implemented into the design system as point-like trips.

1.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
509
537
.
2.
Lakshminarayana
,
B.
, 1991, “
An Assessment of Computational Fluid Dynamic Techniques in the Analysis and Design of Turbomachinery—The 1990 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
0098-2202,
113
, pp.
315
352
.
3.
Simoneau
,
R. J.
, and
Simon
,
F. F.
, 1993, “
Progress Towards Understanding and Predicting Heat Transfer in the Turbine Gas Path
,”
Int. J. Heat Fluid Flow
0142-727X,
14
, pp.
106
128
.
4.
Simon
,
F. F.
, and
Ashpis
,
D. E.
, 1996, “
Progress in Modeling of Laminar to Turbulent Transition on Turbine Vanes and Blades
,” NASA Technical Memorandum No. 107180.
5.
Dunn
,
M. G.
, 2001, “
Convective Heat Transfer and Aerodynamics in Axial Flow Turbines
,” ASME Paper No. 2001-GT-0506.
6.
Yaras
,
M. I.
, 2002, “
Measurements of the Effects of Freestream Turbulence on Separation-Bubble Transition
,” ASME Paper No. GT-2002–30232.
7.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Industries, Inc.
,
La Canada, CA
.
8.
Ames
,
F. E.
, 1994, “
Experimental Study of Vane Heat Transfer and Aerodynamics in Elevated Levels of Turbulence
,” NASA Contract Report No. 4633.
9.
Ni
,
R. H.
, 1999, “
Advanced Modeling Techniques for New Commercial Engines
,” 1999,
Proceedings of the XIV International Symposium on Air Breathing Engines
,
Florence, Italy
, 5–10 September.
10.
Davis
,
R. L.
,
Shang
,
T.
,
Buteau
,
J.
, and
Ni
,
R. H.
, 1996, “
Prediction of 3-D Unsteady Flow in Multi-Stage Turbomachinery Using an Implicit Dual Time-Step Approach
,” AIAA Paper No. 96–2565.
11.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
, 1980, “
Natural Transition of Boundary Layers—The Effects of Turbulence, Pressure Gradient, and Flow History
,”
J. Mech. Eng. Sci.
0022-2542,
22
(
5
), pp.
213
228
.
12.
Wilcox
,
D. C.
, 1988, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
0001-1452,
26
, pp.
1299
1310
.
13.
Baines
,
W. D.
, and
Peterson
,
E. G.
, 1951, “
An Investigation of Flow Through Screens
,”
Trans. ASME
0097-6822,
73
, pp.
467
480
.
14.
Hinze
,
J. O.
, 1975,
Turbulence
, 2nd ed.,
McGraw–Hill
,
New York
, p.
272
.
15.
Ames
,
F. E.
, and
Plesniak
,
M. W.
, 1995, “
The Influence of Large Scale, High Intensity Turbulence on Vane Aerodynamic Losses, Wake Growth, and Exit Turbulence Parameters
,” ASME Report No. 95-GT-290.
16.
Moss
,
R. W.
, and
Oldfield
,
M. L. G.
, 1992, “
Measurements of the Effect of Free-Stream Turbulence Length Scale on Heat Transfer
,” ASME Report No. 92-GT-244.
17.
Boyle
,
R. J.
,
Bunker
,
R. S.
, and
Giel
,
P. W.
, 2003, “
Predictions for the Effects of Turbulence on Turbine Blade Heat Transfer
,” ISABE Report No. 2003 1178.
18.
Roach
,
P. E.
, and
Brierley
,
D. H.
, 2000, “
Bypass Transition Modeling: A New Method Which Accounts for Freestream Turbulence Intensity and Length Scale
,” ASME Report No. 2000-GT-278.
19.
Sharma
,
O. P.
,
Renaud
,
E.
,
Butler
,
T. L.
,
Milsaps
,
K.
,
Dring
,
R. P.
, and
Joslyn
,
H. D.
, 1988, “
Rotor-Stator Interaction in Multi-Stage Axial-Flow Turbines
,” AIAA Report No. 88–3013.
20.
Ames
,
F. E.
, 1995, “
Advanced k-epsilon Modeling of Heat Transfer
,” NASA Contract Report No. 4679.
21.
Van Fossen
,
G. J.
,
Simoneau
,
R. J.
, and
Ching
,
C. Y.
, 1994, “
Influence of Turbulence Parameters, Reynolds Number, and Body Shape on Stagnation-Region Heat Transfer
,” NASA Technical Report No. 3487.
22.
Arts
,
T.
,
de Rouvroit
,
L. M.
, and
Rutherford
,
A. W.
, 1990, “
Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade
,” von Karman Institute for Fluids Dynamics Technical Note No. 174.
23.
Schmidt
,
R. C.
, and
Patankar
,
S. V.
, 1988, “
Two-Equation Low-Reynolds-Number Turbulence Modeling of Transitional Boundary Layer Flows Characteristic of Gas Turbine Blades
,” NASA Contract Report No. 4145.
24.
Praisner
,
T. J.
,
Clark
,
J. P.
,
Grover
,
E. A.
,
Bertuccioli
,
L.
, and
Zhang
,
D.
, 2004, “
Challenges in Predicting Component Efficiencies in Turbines with Low Reynolds Number Blading
,” NASA/TM-2004-212913, p.
58
25.
Blair
,
M. F.
, and
Werle
,
M. J.
, 1981, “
Combined Influence of Freestream Turbulence and Favorable Pressure Gradients on Boundary Layer Transition and Heat Transfer
,” UTRC Report No. R81–914388–17.
26.
Emmons
,
H. W.
, 1951, “
The Laminar Turbulent Transition in a Boundary Layer. Part 1
,”
J. Aeronaut. Sci.
0095-9812,
18
, pp.
490
498
.
27.
Schubauer
,
G. B.
, and
Klebanoff
,
P. S.
, 1955, “
Contributions on the Mechanics of Boundary Layer Transition
,” NASA TN Paper No. 3489.
28.
Narasimha
,
R.
, 1957, “
On the Distribution of Intermittency in the Transition Region of a Boundary Layer
,”
J. Aeronaut. Sci.
0095-9812,
24
, pp.
711
712
.
29.
Clark
,
J. P.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
, 1994, “
On the Propagation of Naturally-Occurring Turbulent Spots
,”
J. Eng. Math.
0022-0833,
28
, pp.
1
19
.
30.
Gostelow
,
J. P.
,
Blunden
,
A. R.
, and
Walker
,
G. J.
, 1994, “
Effects of Freestream Turbulence and Adverse Pressure Gradients on Boundary-Layer Transition
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
392
404
.
31.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi.
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. W.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines: Part 3 of 4—LP Turbines
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
225
237
.
32.
Chen
,
K. K.
, and
Thyson
,
N. A.
, 1971, “
Extension of Emmons’ Theory to Flows on Blunt Bodies
,”
AIAA J.
0001-1452,
9
(
5
), pp.
821
825
.
33.
Dey
,
J.
, and
Narasimha
,
R.
, 1990, “
Integral Method for the Calculation of Incompressible Two Dimensional Transitional Boundary Layers
,”
J. Aircr.
0021-8669,
27
(
10
), pp.
859
865
.
34.
Solomon
,
W. J.
,
Walker
,
G. J.
, and
Gostelow
,
J. P.
, 1996, “
Transition Length Prediction for Flows with Rapidly Changing Pressure Gradients
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
744
751
.
35.
Dhawan
,
S.
, and
Narasimha
,
R.
, 1958, “
Some Properties of Boundary Layer Flow During the Transition From Laminar to Turbulent Motion
,”
J. Fluid Mech.
0022-1120,
3
, pp.
418
436
.
36.
Suzen
,
Y. B.
, and
Huang
,
P. G.
, 2000, “
Modeling of Flow Transition Using and Intermittency Transport Equation
,”
ASME J. Fluids Eng.
0098-2202,
122
, pp.
273
284
.
37.
Steelant
,
J.
, and
Dick
,
E.
, 2001, “
Modeling of Laminar-Turbulent Transition for High Free Stream Turbulence
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
22
30
.
38.
Drela
,
M.
, 1995, “
MISES Implementation of Modified Abu-Ghannam-Shaw Transition Criterion
,” MIT Technical Report.
39.
Gier
,
J.
,
Ardey
,
S.
, and
Heisler
,
A.
, 2000, “
Analysis of Complex Three-Dimensional Flow in a Three-Stage LP Turbine by Means of Transitional Navier-Stokes Simulation
,” ASME Paper No. 2000-GT-645.
40.
Thermann
,
H.
,
Mueller
,
M.
, and
Niehuis
,
R.
, 2001, “
Numerical Simulation of Boundary Layer Transition in Turbomachinery Flows
,” ASME Paper No. 2001-GT-0475.
41.
Roux
,
J.
,
Lefebvre
,
M.
, and
Liamis
,
N.
, 2002, “
Unsteady and Calming Effects Investigation on a Very High Lift LP Turbine Blade—Part II: Numerical Analysis
,” ASME Paper No. GT2002–30228.
42.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2003, “
Measurements and Prediction of Freestream Turbulence and Pressure-Gradient Effects on Attached-Flow Boundary-Layer Transition
,” ASME Paper No. GT2003–38261.
43.
Narasimha
,
R.
, 1985, “
The Laminar Turbulent Transition Zone in the Boundary Layer
,”
Prog. Aerosp. Sci.
0376-0421,
22
, pp.
29
80
.
44.
Fraser
,
C. J.
,
Higazy
,
M. G.
, and
Milne
,
J. S.
, 1994, “
End-Stage Boundary Layer Transition Models for Engineering Calculations
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
208
(
C1
), pp.
47
58
.
45.
Narasimha
,
R.
, 1990, “
Modeling the Transitional Boundary Layer
,” NASA CR 187487.
46.
Narasimha
,
R.
, 1991, “
Recent Advances in the Dynamics of the Transition Zone
,” ISABE Report No. 91 7006.
47.
Owen
,
F. K.
, 1970, “
Transition Experiments on a Flat Plate at Subsonic and Supersonic Speeds
,”
AIAA J.
0001-1452,
8
(
3
), pp.
518
523
.
48.
Sharma
,
O. P.
,
Wells
,
R. A.
,
Schlinker
,
R. H.
, and
Bailey
,
D. A.
, 1982, “
Boundary Layer Development on Airfoil Suction Surfaces
,”
ASME J. Eng. Power
0022-0825,
104
, pp.
698
706
.
49.
Clark
,
J. P.
, 1993, “
A Study of Turbulent-Spot Propagation in Turbine-Representative Flows
,” D. Phil, University of Oxford, Oxford, England.
50.
Narasimha
,
R.
, 2003, “
Review of Recent Research in Bangalore on the Transition Zone
,” NASA/TM-2004-212913, p.
63
.
51.
Hofeldt
,
A. J.
, 1996, “
An Investigation of Naturally-Ocurring Turbulent Spots Using Thin-Film Gages
,” Ph.D. thesis, University of Oxford, Oxford, England.
52.
Tani
,
I.
, 1969, “
Boundary-Layer Transition
,”
Annu. Rev. Fluid Mech.
0066-4189,
1
, pp.
169
196
.
53.
Reshotko
,
E.
, 1976, “
Boundary Layer Stability and Transition
,”
Annu. Rev. Fluid Mech.
0066-4189,
8
, pp.
311
349
.
54.
Liepmann
,
H. W.
, 1945, “
Investigation of Boundary Layer Transition on Concave Walls
,” NACA Wartime Report No. W-87 (also NACA ACR 4J28).
55.
Liepmann
,
H. W.
, 1943, “
Investigations of Laminar Boundary Layer Stability and Transition on Curved Boundaries
,” NACA Wartime Report No. W-107 (also NACA ACR 3H30).
56.
Van Driest
,
E. R.
, and
Blumer
,
C. B.
, 1963, “
Boundary Layer Transition: Free Stream Turbulence and Pressure Gradient Effects
,”
AIAA J.
0001-1452,
1
, pp.
1303
1306
.
57.
Mayle
,
R. E.
, and
Schulz
,
A.
, 1997, “
The Path to Predicting Bypass Transition
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
405
411
.
58.
Suder
,
K. L.
,
O’Brien
,
J. E.
, and
Reshotko
,
E.
, 1988, “
Experimental Study of Bypass Transition in a Boundary Layer
,” NASA TM Report No. 100913.
59.
Kim
,
J.
,
Simon
,
T. W.
, and
Kestoras
,
M.
, 1994, “
Fluid Mechanics and Heat Transfer Measurements in Transitional Boundary Layers Conditionally Sampled on Intermittency
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
405
416
.
60.
Morkovin
,
M. V.
, 1978, “
Instability, Transition to Turbulence, and Predictability
,” NATO AGARDograph No. 236.
61.
Massey
,
B. S.
, 1986,
Measures in Science and Engineering
,
Ellis-Horwood, Ltd.
,
Chichester, UK
, pp.
125
127
.
62.
Michelassi
,
V.
,
Rodi
,
W.
, and
Giess
,
P.-A.
, 1998, “
Experimental and Numerical Investigation of Boundary-Layer and Wake Development in a Transonic Turbine Cascade
,”
Aerosp. Sci. Technol.
1270-9638,
3
, pp.
191
204
.
63.
White
,
F. M.
, 1991,
Viscous Fluid Flow
, 2nd ed.,
McGraw-Hill
,
New York
, pp.
273
274
.
64.
Schlichting
,
H.
, 1979,
Boundary Layer Theory
, 7th ed.,
McGraw-Hill
,
New York
, pp.
90
91
,
470
.
65.
Hofeldt
,
A. J.
,
Clark
,
J. P.
,
LaGraff
,
J. E.
, and
Jones
,
T. V.
, 1998, “
The Becalmed Region in Turbulent Spots
,” NASA CP 1998–206958, pp.
95
98
.
66.
Herbert
,
T.
, 1988, “
Secondary Instability of Boundary Layers
,”
Annu. Rev. Fluid Mech.
0066-4189,
20
, pp.
487
526
.
67.
Walker
,
G. J.
, and
Gostelow
,
J. P.
, 1990, “
Effects of Adverse Pressure Gradients on the Nature and Length of Boundary-Layer Transition
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
196
205
.
68.
Mack
,
L. M.
, 1975, “
Linear Stability Theory and the Problem of Supersonic Boundary Layer Transition
,”
AIAA J.
0001-1452,
13
(
3
), pp.
278
289
.
69.
Volino
,
R. J.
, 2002, “
Separated Flow Transition Under Simulated Low-Pressure Turbine Airfoil Conditions—Part 1: Mean flow and Turbulence Statistics
,” ASME Paper No. 2002-GT-30236.
70.
Volino
,
R. J.
, 2002b, “
Separated Flow Transition Under Simulated Low-Pressure Turbine Airfoil Conditions: Part 2—Turbulence Spectra
,” ASME Paper No. 2002-GT-30237.
71.
Roberts
,
W. B.
, 1980, “
Calculation of Laminar Separation Bubbles and Their Effect on Airfoil Performance
,”
AIAA J.
0001-1452,
18
(
1
), pp.
25
31
.
72.
Walker
,
G. J.
, 1989, “
Modeling of Transitional Flow in Laminar Separation Bubbles
,”
Proceedings of the Ninth International Symposium on Air Breathing Engines
, pp.
539
548
.
73.
Hatman
,
A.
, and
Wang
,
T.
, 1999, “
A Prediction Model for Separated Flow Transition
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
594
602
.
74.
Houtermans
,
R.
,
Coton
,
T.
, and
Arts
,
T.
, 2003, “
Aerodynamic Performance of a Very High Lift LP Turbine Blade With Emphasis on Separation Prediction
,” ASME Paper No. 2003-GT-38802.
75.
Davis
,
R. L.
,
Carter
,
J. E.
, and
Reshotko
,
E.
, 1985, “
Analysis of Transitional Separation Bubbles on Infinite Swept Wings
,” AIAA Paper No. 85–1685.
76.
Bons
,
J. P.
,
Hansen
,
L. C.
,
Clark
,
J. P.
,
Koch
,
P. J.
, and
Sondergaard
,
R.
, 2005, “
Designing Low-Pressure Turbine Blades With Integrated Flow Control
,” ASME Paper No. GT2005–68962.
77.
Lou
,
W.
, and
Hourmouziadis
,
J.
, 2000, “
Separation Bubbles Under Steady and Periodic-Unsteady Main Flow Conditions
,” ASME Paper No. 2000-GT-0270.
78.
Walker
,
G. J.
,
Subroto
,
P. H.
, and
Platzer
,
M. F.
, 1988, “
Transition Modeling Effects on Viscous/Inviscid Interaction Analysis of Low Reynolds Number Airfoil Flows Involving Laminar Separation Bubbles
,” ASME Paper No. 88-GT-32.
79.
Praisner
,
T. J.
,
Grover
,
E. A.
,
Rice
,
M. J.
, and
Clark
,
J. P.
, 2004, “
Predicting Transition in Turbomachinery, Part II—Model Validation and Benchmarking
,” ASME Paper No. GT-2004–54109.
You do not currently have access to this content.