Pressure and flow fields lay at the basis of such common phenomena affecting brush seal performance as bristle flutter, blow-down, hang-up, hysteresis, pressure stiffening, wear, and leakage. Over the past two decades of brush seal evolution, manufacturers and researchers have applied many geometric configurations to the front and backing plates of a standard brush seal in order to control the flow field and consequent seal performance. The number of studies evaluating the effect of geometric configurations on the brush seal flow field remains limited in spite of the high number of filed patent disclosures. This study presents a numerical analysis of brush seal pressure and flow fields with regard to common conceptual front plate configurations. A CFD model has been employed to calculate pressure and flow fields in the seal domain. The model incorporates a bulk porous medium approach for the bristle pack. The effectiveness of various conceptual geometries has been outlined in terms of flow field formation. Results disclose unique effects of geometry on pressure and flow fields such that a longer front plate drives outward radial flow while playing a protective role against upstream cavity disturbances. Findings also indicate that variations in front plate geometry do not directly affect leakage performance. A long front plate or damper shim considerably changes the flow field while at the same time having limited effect on the pressure field. Moreover, a strong suction towards the clearance enhances inward radial flow in clearance operation.

1.
Dogu
,
Y.
, 2005, “
Investigation of Brush Seal Flow Characteristics Using Bulk Porous Medium Approach
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
(
1
), pp.
136
144
.
2.
Dinc
,
S.
,
Demiroglu
,
M.
,
Turnquist
,
N.
,
Mortzheim
,
J.
,
Goetze
,
G.
,
Maupin
,
J.
,
Hopkins
,
J.
,
Wolfe
,
C.
, and
Florin
,
M.
, 2002, “
Fundamental Design Issues of Brush Seals for Industrial Applications
,”
ASME J. Turbomach.
0889-504X,
124
(
2
), pp.
293
300
.
3.
Basu
,
P.
,
Datta
,
A.
,
Loewenthal
,
R.
,
Short
,
J.
, and
Johnson
,
R.
, 1994, “
Hysteresis and Bristle Stiffening Effects in Brush Seals
,”
J. Propul. Power
0748-4658,
10
(
4
), pp.
569
575
.
4.
Short
,
J. F.
,
Basu
,
P.
,
Datta
,
A.
,
Loewenthal
,
R. G.
, and
Prior
,
R. J.
, 1996, “
Advanced Brush Seal Development
,” AIAA paper no. 96–2907.
5.
Berard
,
G.
, and
Short
,
J.
, 1999, “
Influence of Design Features on Brush Seal Performance
,” AIAA paper no. 99–2685.
6.
O’Neil
,
A. T.
,
Hogg
,
S. I.
,
Withers
,
P. A.
,
Turner
,
M. T.
, and
Jones
,
T. V.
, 1997, “
Multiple Brush Seals in Series
,” ASME paper no. 97-GT-194.
7.
Tseng
,
W.-Y.
,
Glynn
,
C. C.
,
Bristol
,
B. L.
, and
Hetico
,
R. R.
, 1994, “
Brush Seal
,” US patent no. 5,318,309.
8.
Tseng
,
W.-Y.
,
Bristol
,
B. L.
,
Hetico
,
R. R.
, and
Glynn
,
C. C.
, 1994, “
Brush Seal
,” US patent no. 5,335,920.
9.
Millener
,
P. J.
, and
Edmunds
,
T. M.
, 1996, “
Brush Seal with Porous Upstream Side-Plate
,” US patent no. 5,496,045.
10.
Hoffelner
,
H.
, 1997, “
Brush Seal for Turbo-Engines
,” US patent no. 5,688,105.
11.
Gail
,
A.
,
Michel
,
U.
,
Pfister
,
E.
,
Reisinger
,
L.
, and
Miller
,
T.
, 1998, “
Brush Seal for Turbo-Engines
,” US patent no. 5,752,805.
12.
Gail
,
A.
,
Michel
,
U.
,
Pfister
,
E.
,
Reisinger
,
L.
, and
Miller
,
T.
, 2000, “
Brush Seal for Turbo Engines
,” US patent no. 6,077,038.
13.
Dinc
,
O. S.
,
Dogu
,
Y.
,
Battle
,
M. E.
,
Albers
,
R. J.
, and
Proctor
,
R.
, 2001, “
Brush Seal Segment Having Bristle Damping
,” US patent no. 6,293,554.
14.
Dinc
,
O. S.
,
Albers
,
R. J.
,
Dogu
,
Y.
, and
Zhou
,
M.
, 2001, “
Rotary Machine Containing a Brush Seal
,” US patent no. 6,302,646.
15.
Albers
,
R. J.
,
Bauer
,
R. C.
,
Brauer
,
J. C.
,
Schmid
,
S. J.
, and
Lewis
,
K. M.
, 2003, “
Brush Seal Support
,” US patent no. 6,644,668.
16.
Kono
,
T.
, 2003, “
Brush Seal Device
,” US patent no. 6,655,692.
17.
Tseng
,
W.-Y.
,
Bristol
,
B. L.
,
Hetico
,
R. R.
, and
Glynn
,
C. C.
, 1996, “
Brush Seal
,” US patent no. 5,568,931.
18.
Basu
,
P.
, and
Short
,
J. F.
, 1999, “
Brush Seal with a Flexible Front Plate
,” US patent no. 5,884,918.
19.
Carter
,
B. A.
, 2000, “
Shingle Damper Brush Seal
,” US patent no. 6,032,959.
20.
Bayley
,
F. J.
, and
Long
,
C. A.
, 1993, “
A Combined Experimental and Theoretical Study of Flow and Pressure Distributions in a Brush Seal
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
115
(
2
), pp.
404
410
.
21.
Turner
,
M. T.
,
Chew
,
J. W.
, and
Long
,
C. A.
, 1998, “
Experimental Investigation and Mathematical Modeling of Clearance Brush Seals
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
120
(
3
), pp.
573
579
.
22.
Ergun
,
S.
, 1952, “
Fluid Flow through Packed Columns
,”
Chem. Eng. Prog.
0360-7275,
19
, pp.
89
94
.
23.
Hendricks
,
R. C.
,
Flower
,
R.
, and
Howe
,
H.
, 1996, “
A Brush Seal Program Modeling and Developments
,” NASA Technical Memorandum 107158.
24.
Chew
,
J. W.
,
Lapworth
,
B. L.
, and
Millener
,
P. J.
, 1995, “
Mathematical Modeling of Brush Seals
,”
Int. J. Heat Fluid Flow
0142-727X,
16
(
2
), pp.
493
500
.
25.
Chew
,
J. W.
, and
Hogg
,
S. I.
, 1997, “
Porosity Modeling of Brush Seals
,”
ASME J. Tribol.
0742-4787,
119
, pp.
769
775
.
26.
Chen
,
L. H.
,
Wood
,
P. E.
,
Jones
,
T. V.
, and
Chew
,
J. W.
, 1999, “
An Iterative CFD and Mechanical Brush Seal Model and Comparison with Experimental Results
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
121
(
4
), pp.
656
661
.
27.
Chen
,
L. H.
,
Wood
,
P. E.
,
Jones
,
T. V.
, and
Chew
,
J. W.
, 2000, “
Detailed Experimental Studies of Flow in Large Scale Brush Seal Model and a Comparison with CFD Predictions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
122
, pp.
672
679
.
28.
Dogu
,
Y.
, and
Aksit
,
M. F.
, 2006, “
Effects of Geometry on Brush Seal Pressure and Flow Fields—II. Backing Plate Configurations
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
379
389
.
You do not currently have access to this content.