This paper presents measurements of separation-bubble transition over a range of surfaces with randomly distributed roughness elements. The tested roughness patterns represent the typical range of roughness conditions encountered on in-service turbine blades. Through these measurements, the effects of size and spacing of the roughness elements, and the tendency of the roughness pattern toward protrusions or depressions (skewness), on the inception location and rate of transition are evaluated. Increased roughness height, increased spacing of the roughness elements, and a tendency of the roughness pattern toward depressions (negative skewness) are observed to promote earlier transition inception. The observed effects of roughness spacing and skewness are found to be small in comparison to that of the roughness height. Variation in the dominant mode of instability in the separated shear layer is achieved through adjustment of the streamwise pressure distribution. The results provide examples for the extent of interaction between viscous and inviscid stability mechanisms.

1.
Leipold
,
R.
,
Boese
,
M.
, and
Fottner
,
L.
, 2000, “
The Influence of Technical Surface Roughness Caused by Precision Forging on the Flow Around a Highly Loaded Compressor Cascade
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
416
425
.
2.
Bons
,
J. P.
, and
McClain
,
S. T.
, 2003, “
The Effect of Real Turbine Roughness With Pressure Gradient on Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
333
441
.
3.
Bons
,
J. P.
,
McClain
,
S. T.
,
Taylor
,
R. P.
, and
Rivir
,
R. B.
, 2001, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
739
748
.
4.
Taylor
,
R. P.
, 1990, “
Surface Roughness Measurements on Gas Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
175
180
.
5.
Kind
,
R. J.
,
Serjak
,
P. J.
, and
Abbott
,
M. W. P.
, 1998, “
Measurements and Prediction of the Effects of Surface Roughness on Profile Losses and Deviation in a Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
20
27
.
6.
Boynton
,
J. L.
,
Tabibzadeh
,
R.
, and
Hudson
,
S. T.
, 1992, “
Investigation of Rotor Blade Roughness Effects on Turbine Performance
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
614
620
.
7.
Suder
,
K. L.
,
Chima
,
R. V.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
, 1995, “
The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
491
505
.
8.
Blair
,
M. F.
, 1994, “
An Experimental Study of Heat Transfer in a Large Scale Turbine Rotor Passage
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
1
13
.
9.
Pinson
,
M. W.
, and
Want
,
T.
, 1997, “
Effects of Leading-Edge Roughness on Fluid Flow and Heat Transfer in the Transitional Boundary Layer Over a Flat Plate
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
2813
2823
.
10.
Wang
,
T.
, and
Rice
,
M. C.
, 2003, “
Effect of Elevated Free-Stream Turbulence on Transitional Heat Transfer Over Dual-Scaled Rough Surfaces
,” ASME GT2003-38835.
11.
Gibbings
,
J. C.
,
Goksel
,
O. T.
, and
Hall
,
D. J.
, 1986, “
The Influence of Roughness Trips Upon Boundary-Layer Transition—Part 1 Characteristics of Wire Trips
,”
Aeronaut. J.
0001-9240,
90
, pp.
289
301
.
12.
Gibbings
,
J. C.
,
Goksel
,
O. T.
, and
Hall
,
D. J.
, 1986, “
The Influence of Roughness Trips Upon Boundary-Layer Transition—Part 2 Characteristics of Single Spherical Trips
,”
Aeronaut. J.
0001-9240,
90
, pp.
357
367
.
13.
Gibbings
,
J. C.
,
Goksel
,
O. T.
, and
Hall
,
D. J.
, 1986, “
The Influence of Roughness Trips Upon Boundary-Layer Transition—Part 3 Characteristics of Rows of Spherical Transition Strips
,”
Aeronaut. J.
0001-9240,
90
, pp.
393
398
.
14.
Klebanoff
,
P. S.
, and
Tidstrom
,
K. D.
, 1982, “
Mechanism by Which a Two-Dimensional Roughness Element Induces Boundary-Layer Transition
,”
Phys. Fluids
0031-9171,
15
, pp.
1173
1188
.
15.
Gibbings
,
J. C.
, and
Al-Shukri
,
S. M.
, 1997, “
Effect of Sandpaper Roughness and Stream Turbulence on the Laminar Layer and its Transition
,”
Aeronaut. J.
0001-9240,
101
, pp.
17
24
.
16.
Kerho
,
M. F.
, and
Bragg
,
M. B.
, 1997, “
Airfoil Boundary-Layer Development and Transition With Large Leading-Edge Roughness
,”
AIAA J.
0001-1452,
35
, pp.
75
84
.
17.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2005, “
Boundary Layer Transition Affected by Surface Roughness and Free-Stream Turbulence
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
449
457
.
18.
Volino
,
R. J.
, and
Bohl
,
D. G.
, 2004, “
Separated Flow Transition Mechanism and Prediction With High and Low Freestream Turbulence Under Low Pressure Turbine Conditions
,” ASME GT2004-53360.
19.
Morris
,
H. M.
, 1955, “
A New Concept of Flow in Rough Conduits
,”
Trans. Am. Soc. Civ. Eng.
0066-0604,
120
, pp.
373
398
.
20.
Waigh
,
D. R.
, and
Kind
,
R. J.
, 1998, “
Improved Aerodynamic Characterization of Regular Three-Dimensional Roughness
,”
AIAA J.
0001-1452,
36
, pp.
1117
1119
.
21.
Dirling
,
R. B. J.
, 1973, “
A Method for Computing Rough Wall Heat Transfer Rates on Reentry Nosetips
,”
AIAA J.
0001-1452,
73
763
.
22.
Dvorak
,
F. A.
, 1969, “
Calculation of Turbulent Boundary Layers on Rough Surfaces in Pressure Gradient
,”
AIAA J.
0001-1452,
7
, pp.
1752
1759
.
23.
Bons
,
J. P.
, 2002, “
St and cf Augmentation for Real Turbine Roughness With Elevated Freestream Turbulence
,” ASME GT2002-30198.
24.
Belnap
,
B. J.
,
van Rij
,
J. A.
, and
Ligrani
,
P. M.
, 2002, “
A Reynolds Analogy for Real Component Surface Roughness
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3089
3099
.
25.
Sigal
,
A.
, and
Danberg
,
J. E.
, 1990, “
New Correlation of the Roughness Density Effect on the Turbulent Boundary Layer
,”
AIAA J.
0001-1452,
20
, pp.
554
556
.
26.
Stripf
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2005, “
Surface Roughness Effects on External Heat Transfer of a HP Turbine Vane
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
200
208
.
27.
Volino
,
R. J.
, 2002, “
Separated Flow Transition under Simulated Low-Pressure Turbine Airfoil Conditions: Part 2-Turbulence Spectra
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
656
664
.
28.
Bao
,
F.
, and
Dallmann
,
U. C.
, 2004, “
Some Physical Aspects of Separation Bubble on a Rounded Backward-Facing Step
,”
Aerosol Sci. Technol.
0278-6826,
8
, pp.
83
91
.
29.
Malkiel
,
E.
, and
Mayle
,
R. E.
, 1996, “
Transition in a Separation Bubble
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
752
759
.
30.
Watmuff
,
J. H.
, 1999, “
Evolution of a Wave Packet Into Vortex Loops in a Laminar Separation Bubble
,”
J. Fluid Mech.
0022-1120,
397
, pp.
119
139
.
31.
Yang
,
Z.
, and
Voke
,
P. R.
, 2001, “
Large-Eddy Simulation of Boundary-Layer Separation and Transition at a Change of Surface Curvature
,”
J. Fluid Mech.
0022-1120,
493
, pp.
305
333
.
32.
Spalart
,
P. R.
, and
Strelets
,
M. K.
, 2000, “
Mechanisms of Transition and Heat Transfer in a Separation Bubble
,”
J. Fluid Mech.
0022-1120,
403
, pp.
329
349
.
33.
Rist
,
U.
, and
Maucher
,
U.
, 2002, “
Investigations of Time-Growing Instabilities in Laminar Separation Bubbles
,”
Eur. J. Mech. B/Fluids
0997-7546,
21
, pp.
495
509
.
34.
Chandrasekhar
,
S.
, 1961,
Hydrodynamic and Hydromagnetic Stability
Clarendon Press
, Oxford.
35.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2005, “
Modeling Transition in Attached and Separated Boundary Layers
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
402
411
.
36.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engine
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
509
537
.
37.
Taylor
,
G. I.
, 1939, “
Some Recent Development in the Study of Turbulence
,”
Proc. 5th Intl. Cong. Appl. Mech
,
J. P.
den Hartog
, and
H.
Peters
, eds.,
Wiley
, New York, pp.
294
310
.
38.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2003, “
Measurements and Prediction of Free-Stream Turbulence and Pressure Gradient Effects on Attached Flow Boundary Layer Transition
,” ASME GT2003-38261.
39.
Solomon
,
W. J.
,
Walker
,
G. J.
, and
Gostelow
,
J. P.
, 1996, “
Transition Length Prediction for Flows With Rapidly Changing Pressure Gradients
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
744
751
.
40.
Emmons
,
H. W.
, 1951, “
The Laminar-Turbulent Transition in a Boundary Layer—Part 1
,”
J. Aeronaut. Sci.
0095-9812,
18
, pp.
490
498
.
41.
Gostelow
,
J. P.
,
Melwani
,
N.
, and
Walker
,
G. J.
, 1996, “
Effects of Streamwise Pressure Gradient on Turbulent Spot Development
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
737
743
.
42.
D’Ovidio
,
A.
,
Harkins
,
J. A.
, and
Gostelow
,
J. P.
, 2001, “
Turbulent Spots in Strong Adverse Pressure Gradients—Part 2: Spot Propagation and Spreading Rates
,” ASME 2001–GT–0406.
43.
Walker
,
G. J.
, 1989, “
Transitional Flow on Axial Compressor Blading
,”
AIAA J.
0001-1452,
27
, pp.
595
602
.
44.
Estevadoral
,
J.
, and
Kleis
,
S. J.
, 1999, “
High-Resolution Measurements of Two-Dimensional Instabilities and Turbulence Transition in Plane Mixing Layers
,”
Exp. Fluids
0723-4864,
27
, pp.
378
390
.
45.
Michalke
,
A.
, 1964, “
On the Inviscid Instability of the Hyperbolic-Tangent Velocity Profile
,”
J. Fluid Mech.
0022-1120,
19
, pp.
543
556
.
You do not currently have access to this content.