The interaction between impeller and diffuser is considered to have strong influence on the flow in centrifugal compressors. However, the knowledge about this influence is still not satisfying. This two-part paper presents an experimental investigation of the effect of impeller-diffuser interaction on the unsteady and the time-averaged flow field in impeller and diffuser and the performance of these components. The flat wedge vaned diffuser of the investigated compressor allows an independent adjustment of diffuser vane angle and radial gap between impeller exit and diffuser vane inlet. Attention is mainly directed to the radial gap, as it determines the intensity of the impeller-diffuser interaction. In Part I it was shown that smaller radial gaps improve diffuser pressure recovery, whereas impeller efficiency is hardly affected. Part II focuses on the reasons for these effects. Measurements with a laser-2-focus velocimeter in the highly unsteady flow field between the impeller exit region and diffuser throat were performed at three different diffuser geometries allowing a detailed flow analysis. Especially the unsteady results show that for a smaller radial gap more impeller wake fluid is conveyed towards the highly loaded diffuser vane pressure side reducing its loading and leading to a better diffusion in the diffuser channel. Concerning the impeller flow, it was found that a smaller radial gap is leading to a noticeable reduction of the wake region at impeller exit. The experimental results are intended to be published as an open CFD test case under the name “Radiver.”

1.
Krain
,
H.
,
1981
, “
A Study on Centrifugal Impeller and Diffuser Flow
,”
ASME J. Eng. Power
,
103
, pp.
688
697
.
2.
Krain, H., 1984, “Experimental Observations of the Flow in Impellers and Diffusers,” VKI Lecture Series 1984–07.
3.
Krain, H., 1999, “High Pressure Ratio Centrifugal Compressor with Transonic Flow,” FEDSM99-7801.
4.
Fradin, C., 1988, “Detailed Measurements of the Flow in the Vaned Diffuser of a Backswept Transonic Centrifugal Impeller,” ICAS-88-2.6.2, 16th ICAS, Jerusalem, Israel.
5.
Fradin, C., and Janssens, G., 1990, “Detailed Measurements of the Flow Field at the Outlet of a Backswept Transonic Centrifugal Impeller Equipped with a Vaned Diffuser,” ASME Cogen Turbo Power, pp. 249–254.
6.
Stahlecker D., 1999, “Untersuchung der instationa¨ren Stro¨mung eines beschaufelten Radialverdichterdiffusors mit einem Laser-Doppler-Anemometer,” doctoral thesis ETH Zu¨rich Nr. 13228, Verlag Mainz Aachen.
7.
Inoue
,
M.
, and
Cumpsty
,
N. A.
,
1984
, “
Experimental Study of Centrifugal Impeller Discharge Flow in Vaneless and Vaned Diffusers
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
455
467
.
8.
Yamane, T., Fujita, H., and Nagashima, T., 1993, “Transonic Discharge Flows Around Diffuser Vanes From a Centrifugal Impeller,” ISABE Paper 93-7053.
9.
Yamane, T., Fujita, H., and Nagashima, T., 1995, “An Investigation of Impeller and Diffuser Interaction in a Transonic Centrifugal Compressor,” Unsteady Aerodynamics and Aeroelasticity of Turbomachines, Elsevier Science B. V; 1994, Proc., ISUAAAT.
10.
Dawes, W. N., 1994, “A Simulation of the Unsteady Interaction of a Centrifugal Impeller with its Vaned Diffuser: Flow Analysis,” ASME Paper 94-GT-105.
11.
Sato, K., He, L., 1998, “Effect of Rotor-Stator Interaction on Impeller Performance in Centrifugal Compressors,” Proc., ISROMAC Conf.
12.
Sato, K., and He, L., 2000, “A Numerical Study on Performances of Centrifugal Compressor Stages with Different Radial Gaps,” ASME Paper 2000-GT-462.
13.
Shum, Y. K. P., Tan, C. S., and Cumpsty, N. A., 2000, “Impeller-Diffuser Interaction in Centrifugal Compressor,” ASME Paper 2000-GT-428.
14.
Peeters, M., and Sleiman, M., 2000, “A Numerical Investigation of the Unsteady Flow in Centrifugal Stages,” ASME Paper 2000-GT-426.
15.
Schodl, R., 1977, “Entwicklung des Laser-Zwei-Fokus-Verfahrens fu¨r die beru¨hrungslose Messung der Stro¨mungsvektoren, insbesondere in Turbomaschinen,” doctoral thesis, RWTH Aachen.
16.
Bramesfeld, W., 1995, “Optimierung eines Laser-Zwei-Fokus-Meßsystems zur beru¨hrungslosen Geschwindigkeitsmessung in Turbomaschinen,” doctoral thesis RWTH Aachen, VDI Fortschritt-Berichte, Reihe 9, Nr. 505, VDI Verlag.
17.
Schodl, R., 1981, “Verfahren und Programm zur Auswertung der von einem L2F-Geschwindigkeitsmeßgera¨t gelieferten Meßdaten,” Internal Report IB 325/2/1981, Institut fu¨r Antriebstechnik, DFVLR Ko¨ln, Germany.
18.
Krain
,
H.
,
1988
, “
Swirling Impeller Flow
,”
ASME J. Turbomach.
,
110
, pp.
122
128
.
19.
Balje, O. E., 1981, Turbomachines, John Wiley and Sons, New York, Chichester, Brisbane, Toronto.
20.
Kirtley, K. R., and Beach, T. A., 1991, “Deterministic Blade Row Interactions in a Centrifugal Compressor Stage,” ASME Paper 91-GT-273.
21.
Graf, M. B., Greitzer, E. M., Marble, F. E., Sharma, O. P., 1999, “Effects of Stator Pressure Field on Upstream Rotor Performance,” ASME Paper 99-GT-99.
22.
Pfleiderer, C., 1961, Die Kreiselpumpen fu¨r Flu¨ssigkeiten und Gase, Springer-Verlag, Berlin, Go¨ttingen, Heidelberg.
23.
Traupel, W., 1988, Thermische Turbomaschinen, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo.
24.
Japikse, D., 1996, Centrifugal Compressor Design and Performance, Concepts ETI, Inc.
25.
Chen, Y. N., Seidel, U., Haupt, U., and Rautenberg, M., 1996, “Jet, Wake and Intrinsic Motion in Impellers of Centrifugal Compressors,” ASME Paper 96-GT-261.
You do not currently have access to this content.