Local heat transfer coefficients on a flat plate surface downstream a row of cylindrical ejection holes were investigated. The parameters blowing angle, hole pitch, blowing rate, and density ratio were varied over a wide range, emphasizing engine relevant conditions. A high-resolution IR-thermography technique was used for measuring surface temperature fields. Local heat transfer coefficients were obtained from a Finite Element analysis. IR-determined surface temperatures and backside temperatures of the cooled test plate measured with thermocouples were applied as boundary conditions in this heat flux computation. The superposition approach was employed to obtain the heat transfer coefficient hf based on the difference between actual wall temperatures and adiabatic wall temperatures in the presence of film cooling. The hf data are given for an engine relevant density ratio of 1.8. Therefore, heat transfer results with different wall temperature conditions and adiabatic film cooling effectiveness results for identical flow situations (i.e., constant density ratios) were combined. Characteristic surface patterns of the locally resolved heat transfer coefficients hf are recognized and quantified as the different ejection parameters are changed. The detailed results are used to discuss the specific local heat transfer behavior in the presence of film cooling. They also provide a base of surface data essential for the validation of the heat transfer capabilities of CFD codes in discrete hole film cooling.

1.
Lee
,
S. W.
,
Lee
,
J. S.
, and
Ro
,
S. T.
,
1994
, “
Experimental Study on the Flow Characteristic of Streamwise Inclined Jets in Crossflow on Flat Plate
,”
ASME J. Turbomach.
,
116
, pp.
97
116
.
2.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1989
, “
Hydrodynamic Measurements of Jet in Crossflow for Gas Turbine Film Cooling Applications
,”
ASME J. Turbomach.
,
111
, pp.
139
145
.
3.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1990
, “
Effect of Density Ratio on the Hydrodynamics of Film Cooling
,”
ASME J. Turbomach.
,
112
, pp.
437
443
.
4.
Burd
,
S. W.
,
Kaszeta
,
R. W.
, and
Simon
,
T. W.
,
1998
, “
Measurements in Film Cooling Flows: Hole L/D and Turbulence Intensity Effects
,”
ASME J. Turbomach.
,
120
, pp.
791
798
.
5.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flow Field Measurements for Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
, pp.
327
336
.
6.
Rydholm
,
H. A.
,
1998
, “
An Experimental Investigation of the Velocity and Temperature Fields of Cold Jets Injected Into a Hot Crossflow
,”
ASME J. Turbomach.
,
120
, pp.
320
326
.
7.
Kohli
,
A.
, and
Bogard
,
D. G.
,
1997
, “
Adiabatic Effectiveness, Thermal Fields, and Velocity Fields for Film Cooling With Large Angle Ejection
,”
ASME J. Turbomach.
,
119
, pp.
352
358
.
8.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
, pp.
800
806
.
9.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
, pp.
807
813
.
10.
Bell
,
C. M.
,
Hamakawa
,
H.
, and
Ligrani
,
P. M.
,
2000
, “
Film Cooling From Shaped Holes
,”
ASME J. Heat Transfer
,
122
, pp.
224
232
.
11.
Sgarzi, O., and Leboeuf, F., 1997, “Analysis of Vortices in Three-Dimensional Jets Introduced in a Cross-Flow Boundary Layer,” ASME Paper No. 97-GT-517.
12.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics Part I: Streamwise Ejection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
, pp.
102
112
.
13.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
High-Resolution Measurements of Local Effectiveness by Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
, No. 4.
14.
Metzger
,
D. E.
, and
Fletcher
,
D. D.
,
1971
, “
Evaluation of Heat Transfer for Film-Cooled Turbine Components
,”
ASME J. Eng. Power
,
8
, pp.
181
184
.
15.
Choe, H., Kays, W. M., and Moffat, R. J., 1974, “The Superposition Approach to Film-Cooling,” ASME Paper 74-WA/HT-27.
16.
Jones, T. V., 1991, “Definition of Heat Transfer Coefficients in the Turbine Situation,” in: Turbomachinery: Latest Developments in a Changing Scene, Paper C423/046, Proc. IMechE, pp. 201–206.
17.
Gritsch, M., Baldauf, S., Martiny, M., Schulz, A., and Wittig, S., 1999, “The Superposition Approach to Local Heat Transfer Coefficients in High Density Ratio Film Cooling Flows,” ASME Paper No. 99-GT-168.
18.
Kays, W. M., and Crawford, M. E., 1980, Convective Heat and Mass Transfer, McGraw-Hill, New York.
19.
Loftus
,
P. J.
, and
Jones
,
T. V.
,
1983
, “
The Effect of Temperature Ratios on the Film Cooling Process
,”
ASME J. Eng. Power
,
105
, pp.
615
620
.
20.
Forth, C. J. P, Loftus, P. J., and Jones, T. V., 1985, “The Effect of Density Ratio on the Film Cooling of a Flat Plate,” Heat Transfer and Cooling in Gas Turbines, AGARD-CP-390, Paper 10.
21.
Forth, C. J. P., and Jones, T. V., 1986, “Scaling Parameters in Film Cooling,” Proc. 8th Int. Heat Transfer Conf., Vol. 3, pp. 1271–1276.
22.
Teekaram
,
A. J. H.
,
Forth
,
C. J. P.
, and
Jones
,
T. V.
,
1989
, “
The Use of Foreign Gas to Simulate the Effects of Density Ratios in Film Cooling
,”
ASME J. Turbomach.
,
111
, pp.
57
62
.
23.
Kumada, M., Hirata, M., and Kasagi, N., 1981, “Studies of a Full-Coverage Film Cooling. Part 2: Measurement of Local Heat Transfer Coefficient,” ASME Paper No. 81-GT-38.
24.
Goldstein
,
R. J.
, and
Taylor
,
J. R.
,
1982
, “
Mass Transfer in the Neighborhood of Jets Entering a Crossflow
,”
ASME J. Heat Transfer
,
104
, pp.
715
721
.
25.
Cho
,
H. H.
, and
Goldstein
,
R. J.
,
1995
, “
Heat (Mass) Transfer and Film Cooling Effectiveness With Injection Through Discrete Holes: Part II—On the Exposed Surface
,”
ASME J. Turbomach.
,
117
, pp.
451
460
.
26.
Ammari
,
H.
,
Hay
,
N.
, and
Lampard
,
D.
,
1990
, “
The Effect of Density Ratio on the Heat Transfer Coefficient From a Film-Cooled Flat Plate
,”
ASME J. Turbomach.
,
112
, pp.
444
450
.
27.
Ekkad
,
S. V.
,
Zapata
,
D.
, and
Han
,
J. C.
,
1997
, “
Heat Transfer Coefficients Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,”
ASME J. Turbomach.
,
119
, pp.
580
586
.
28.
Goldstein
,
R. J.
,
Jin
,
P.
, and
Olson
,
R. L.
,
1999
, “
Film Cooling Effectiveness and Mass/Heat Transfer Downstream of One Row of Discrete Holes
,”
ASME J. Turbomach.
,
121
, pp.
225
232
.
29.
Gritsch, M., Schulz, A., and Wittig, S., 1998, “Heat Transfer Coefficient Measurements of Film-Cooling Holes With Expanded Exits,” ASME Paper No. 98-GT-28.
30.
Martiny, M., Schiele, R., Gritsch, M., Schulz, A., and Wittig, S., 1996, “In Situ Calibration for Quantitative Infrared Thermography,” Quirte¨96 Eurotherm Seminar No. 50, Stuttgart, Germany, Sept. 2–5.
31.
Jacobsen, K., 1987, “Experimentelle Untersuchungen zum Durchflufl und Wa¨rmeu¨bergang in Durchblick- und Stufenlabyrinthen,” Dissertation, Institut fu¨r Thermische Stro¨mungsmaschinen, Universita¨t Karlsruhe.
32.
Gnielinski, V., 1975, Forschung im Ingenieurswesen 41, No. 1.
You do not currently have access to this content.