A previously documented systematic computational methodology is implemented and applied to a jet-in-crossflow problem in order to document all of the pertinent flow physics associated with a film-cooling flowfield. Numerical results are compared to experimental data for the case of a row of three-dimensional, inclined jets with length-to-diameter ratios similar to a realistic film-cooling application. A novel vorticity-based approach is included in the analysis of the flow physics. Particular attention has been paid to the downstream coolant structures and to the source and influence of counterrotating vortices in the crossflow region. It is shown that the vorticity in the boundary layers within the film hole is primarily responsible for this secondary motion. Important aspects of the study include: (1) a systematic treatment of the key numerical issues, including accurate computational modeling of the physical problem, exact geometry and high-quality grid generation techniques, higher-order numerical discretization, and accurate evaluation of turbulence model performance; (2) vorticity-based analysis and documentation of the physical mechanisms of jet–crossflow interaction and their influence on film-cooling performance; (3) a comparison of computational results to experimental data; and (4) comparison of results using a two-layer model near-wall treatment versus generalized wall functions. Solution of the steady, time-averaged Navier–Stokes equations were obtained for all cases using an unstructured/adaptive grid, fully explicit, time-marching code with multigrid, local time stepping, and residual smoothing acceleration techniques. For the case using the two-layer model, the solution was obtained with an implicit, pressure-correction solver with multigrid. The three-dimensional test case was examined for two different film-hole length-to-diameter ratios of 1.75 and 3.5, and three different blowing ratios, from 0.5 to 2.0. All of the simulations had a density ratio of 2.0, and an injection angle of 35 deg. An improved understanding of the flow physics has provided insight into future advances to film-cooling configuration design. In addition, the advantages and disadvantages of the two-layer turbulence model are highlighted for this class of problems. [S0889-504X(00)01201-0]
Skip Nav Destination
Article navigation
January 2000
Technical Papers
A Detailed Analysis of Film-Cooling Physics: Part I—Streamwise Injection With Cylindrical Holes
D. K. Walters,
D. K. Walters
Department of Mechanical Engineering, Clemson University, Clemson, SC 29634
Search for other works by this author on:
J. H. Leylek
J. H. Leylek
Department of Mechanical Engineering, Clemson University, Clemson, SC 29634
Search for other works by this author on:
D. K. Walters
Department of Mechanical Engineering, Clemson University, Clemson, SC 29634
J. H. Leylek
Department of Mechanical Engineering, Clemson University, Clemson, SC 29634
Contributed by the International Gas Turbine Institute and presented at the 42nd International Gas Turbine and Aeroengine Congress and Exhibition, Orlando, Florida, June 2–5, 1997. Manuscript received International Gas Turbine Institute February 1997. Paper No. 97-GT-269. Associate Technical Editor: H. A. Kidd.
J. Turbomach. Jan 2000, 122(1): 102-112 (11 pages)
Published Online: February 1, 1997
Article history
Received:
February 1, 1997
Citation
Walters , D. K., and Leylek , J. H. (February 1, 1997). "A Detailed Analysis of Film-Cooling Physics: Part I—Streamwise Injection With Cylindrical Holes ." ASME. J. Turbomach. January 2000; 122(1): 102–112. https://doi.org/10.1115/1.555433
Download citation file:
Get Email Alerts
Related Articles
A Detailed Analysis of Film Cooling Physics: Part IV— Compound-Angle Injection With Shaped Holes
J. Turbomach (January,2000)
A Detailed Analysis of Film Cooling Physics: Part III— Streamwise Injection With Shaped Holes
J. Turbomach (January,2000)
Film Cooling of a Cylindrical Leading Edge With Injection Through Rows of Compound-Angle Holes
J. Heat Transfer (August,2001)
A Detailed Analysis of Film Cooling Physics: Part II—Compound-Angle Injection With Cylindrical Holes
J. Turbomach (January,2000)
Related Proceedings Papers
Related Chapters
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Extended Surfaces
Thermal Management of Microelectronic Equipment, Second Edition
Extended Surfaces
Thermal Management of Microelectronic Equipment