Transonic turbine rotors produce shock waves, wakes, tip leakage flows, and other secondary flows that the downstream stators have to ingest. While the physics of wake ingestion and shock interaction have been studied quite extensively, few ideas for reducing the aerodynamic interaction losses have been forthcoming. This paper aims to extend previously reported work performed by GE Aircraft Engines in this area. It reports on both average-passage (steady) and unsteady three-dimensional numerical simulations of a candidate design to shed light on the interaction loss mechanisms and evaluate the design. The results from these simulations are first shown against test data for a baseline configuration to engender confidence in the numerical approach. Simulations with the proposed newly designed rotor are then performed to show the trade-offs that are being made in such designs. The new rotor does improve the overall efficiency of the group and physical explanations are presented based on examining entropy production.

1.
Abhari
R. S.
,
Guenette
G. R.
,
Epstein
A. H.
, and
Giles
M. B.
,
1992
, “
Comparison of Time-Resolved Turbine Rotor Blade Heat Transfer Measurements and Numerical Calculations
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
114
, pp.
818
827
.
2.
Adamczyk
J. J.
,
Celestina
M. L.
, and
Chen
J. P.
,
1996
, “
Wake-Induced Unsteady Flows: Their Impact on Rotor Performance and Wake Rectification
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
118
, pp.
88
95
.
3.
Adamczyk
J. J.
,
Celestina
M. L.
,
Beach
T. A.
, and
Barnett
M.
,
1990
, “
Simulation of Three-Dimensional Viscous Flow Within a Multistage Turbine
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
112
, pp.
370
376
.
4.
Arnone, A., and Stecco, S. S., 1991, “Transonic Cascade Flow Prediction Using the Navier–Stokes Equations,” ASME Paper No. 91-GT-313.
5.
Arts, T., and Heider, R., 1994, “Aerodynamic and Thermal Performance of a Three Dimensional Annular Transonic Nozzle Guide Vane, Part 1: Experimental Investigation,” AIAA Paper No. 94-2929.
6.
Chen, J. P., Celestina, M. L., and Adamczyk, J. J., 1994, “A New Procedure for Simulating Unsteady Flows Through Turbomachinery Blade Passages,” ASME Paper No. 94-GT-151.
7.
Fritsch
G.
, and
Giles
M. B.
,
1995
, “
An Asymptotic Analysis of Mixing Loss
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
117
, pp.
367
374
.
8.
Dawes, W. N., 1991, “Multi-blade Row Navier–Stokes Simulations of Fan-Bypass Configurations,” ASME Paper No. 91-GT-148.
9.
Dawes
W. N.
,
1995
, “
A Simulation of the Unsteady Interaction of a Centrifugal Impeller With Its Vaned Diffuser: Flow Analysis
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
117
, pp.
213
222
.
10.
Dawes, W. N., 1994, “A Numerical Study of the Interaction of a Transonic Compressor Rotor Overtip Leakage Vortex With the Following Stator Blade Row,” ASME Paper No. 94-GT-156.
11.
Giles
M. B.
,
1990
, “
Stator/Rotor Interaction in a Transonic Turbine
,”
AIAA Journal of Propulsion
, Vol.
6
, p.
621
621
.
12.
Guenette
G. R.
,
Epstein
A. H.
,
Giles
M. B.
,
Haimes
R.
, and
Norton
R. J. G.
,
1989
, “
Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
111
, pp.
1
7
.
13.
Heider, R., and Arts, T., 1994, “Aerodynaic and Thermal Performance of a Three Dimensional Annular Transonic Nozzle Guide Vane, Part 2: Assessment of a Three Dimensional Navier–Stokes Solver,” AIAA Paper No. 94-2930.
14.
Kerrebrock
J. L.
, and
Mikolajczak
A. A.
,
1970
, “
Intra-Stator Transport of Rotor Wakes and Its Effect on Compressor Performance
,”
ASME Journal of Engineering for Power
, Vol.
92
, pp.
359
368
.
15.
Johnson, A. B., Oldfield, M. L. G., Rigby, M. J., and Giles, M. B., 1990, “Nozzle Guide Vane Shock Wave Propagation and Bifurcation in a Transonic Turbine Rotor,” ASME Paper No. 90-GT-310.
16.
Madavan, N. K., and Rai, M. M., 1989, “Grid Refinement Studies of Turbine Rotor-Stator Interaction,” AIAA Paper No. 89-0325.
17.
Rai
M. M.
,
1987
, “
Navier–Stokes Simulations of Rotor-Stator Interaction Using Patched and Overlaid Grids
,”
AIAA Journal of Propulsion and Power
, Vol.
3
, pp.
387
396
.
18.
Rangwalla
A. A.
,
Madavan
N. K.
, and
Johnson
P. D.
,
1992
, “
Application of an Unsteady Navier–Stokes Solver to Transonic Turbine Design
,”
AIAA Journal of Propulsion and Power
, Vol.
8
, pp.
1079
1086
.
19.
Shelton, M. L., Gregory, B. A., Lamson, S. H., Moses, H. L., Doughty, R. L., and Kiss, T., 1993a, “Optimization of a Transonic Turbine Airfoil Using Artificial Intelligence, CFD and Cascade Testing,” ASME Paper No. 93-GT-161.
20.
Shelton
M. L.
,
Gregory
B. A.
,
Doughty
R. L.
,
Kiss
T.
, and
Moses
H. L.
,
1993
b, “
A Statistical Approach to the Experimental Evaluation of Transonic Turbine Airfoils in a Linear Cascade
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
115
, pp.
366
375
.
21.
Sieverding
C. H.
,
Arts
T.
,
De´nos
R.
, and
Martelli
F.
,
1996
, “
Investigation of the Flow Field Downstream of a Turbine Trailing Edge Cooled Nozzle Guide Vane
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
118
, pp.
291
300
.
22.
Sieverding, C. H., 1973, “Experimental Data on Two Transonic Turbine Blade Sections and Comparison With Various Theoretical Methods,” VKI LS 59, Transonic Flows in Turbomachinery.
23.
Sieverding, C. H., Stanislas, M., and Snoech, J., 1979, “The Base Pressure Problem in Transonic Cascade,” ASME Paper No. 79-GT-120.
24.
Turner, M. G., Liang, T., Beauchamp, P. P., and Jennions, I. K., 1993, “The Use of Orthogonal Grids in Turbine CFD Computations,” ASME Paper No. 93-GT-38.
This content is only available via PDF.
You do not currently have access to this content.