Abstract

A study on friction is necessary to improve the forming quality of stamped parts. It has been found that pulsed current can improve the forming properties of aluminum alloys, mainly in terms of Joule heat and electroplasticity. Thus, this article revolves around the effect of different current densities on the friction and wear of 7075-T6 aluminum alloy sheets. The change rule of friction coefficient under different current densities is derived through a friction test, and the variable friction simulation model is established. Scanning electron microscope (SEM) and X-ray diffraction (XRD) are used to analyze the micromorphology and elemental composition of the wear surface. The diffraction peaks of Al are analyzed by XRD, and grain size and dislocation density are calculated. Finally, the actual stamping results are compared with the simulation results. The results show that the friction coefficient decreases with the increase of current density when the current density is less than 10 A/mm2, and the wear mechanism is mainly abrasive wear. When the current density is greater than 10 A/mm2, the friction coefficient increases with the increase of current density and the wear mechanism is mainly adhesive and electrical wear. The grain size and dislocation density mainly depend on the electrical plasticity. The variable friction model's simulated thickness distribution and rebound results align more with the situation.

References

1.
Bariani
,
P. F.
,
Bruschi
,
S.
,
Ghiotti
,
A.
, and
Michieletto
,
F.
,
2013
, “
Hot Stamping of AA5083 Aluminium Alloy Sheets
,”
CIRP Ann.
,
62
(
1
), pp.
251
254
.
2.
Yadav
,
R.
,
Dwivedi
,
V. K.
, and
Dwivedi
,
S. P.
,
2024
, “
Analysis of Mechanical Properties and Manufacturing Process of Aluminum Series
,”
J. Inst. Eng. (India): Ser. D
, pp.
1
13
.
3.
Pian
,
W.
,
Zhou
,
Y.
, and
Xiao
,
T.
, “
A Review of the Feasibility of Aluminum Alloys, Carbon Fiber Composites and Glass Fiber Composites for Vehicle Weight Reduction in the Automotive Industry
,”
Proc. J. Phys. Conf. Ser.
,
2608
(
1
), p.
012005
.
4.
Dehghani
,
K.
,
Ghorbani
,
R.
, and
Soltanipoor
,
A.
,
2015
, “
Microstructural Evolution and Mechanical Properties During the Friction Stir Welding of 7075-O Aluminum Alloy
,”
Int. J. Adv. Manuf. Technol.
,
77
(
9–12
), pp.
1671
1679
.
5.
Liu
,
Y.
,
Zhu
,
Z.
,
Wang
,
Z.
,
Zhu
,
B.
,
Wang
,
Y.
, and
Zhang
,
Y.
,
2018
, “
Flow and Friction Behaviors of 6061 Aluminum Alloy at Elevated Temperatures and Hot Stamping of a B-Pillar
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9–12
), pp.
4063
4083
.
6.
Fan
,
X.-B.
,
He
,
Z.-B.
,
Zhou
,
W.-X.
, and
Yuan
,
S.-J.
,
2016
, “
Formability and Strengthening Mechanism of Solution Treated Al–Mg–Si Alloy Sheet Under Hot Stamping Conditions
,”
J. Mater. Process. Technol.
,
228
(
2
), pp.
179
185
.
7.
Scharifi
,
E.
,
Yardley
,
V. A.
,
Weidig
,
U.
,
Szegda
,
D.
,
Lin
,
J.
, and
Steinhoff
,
K.
,
2023
, “
Hot Sheet Metal Forming Strategies for High-Strength Aluminum Alloys: A Review – Fundamentals and Applications
,”
Adv. Eng. Mater.
,
25
(
16
), p.
2300141
.
8.
Yu
,
T.
,
Deng
,
D.
,
Wang
,
G.
, and
Zhang
,
H.
,
2016
, “
Crack Healing in SUS304 Stainless Steel by Electropulsing Treatment
,”
J. Cleaner Prod.
,
113
(
1
), pp.
989
994
.
9.
Liu
,
W.
,
Otegi
,
N.
,
Orallo
,
A.
,
Barrenetxea
,
M.
,
Aizpuru
,
I.
,
Lian
,
J.
, and
Mendiguren
,
J.
,
2022
, “
Post-Forming, Electro-Plastic Effect Internal Stress Reduction in AA5754 Aluminium Alloy
,”
Mater. Sci. Eng. A
,
852
(
9
), pp.
143686
143698
.
10.
Ruszkiewicz
,
B. J.
,
Grimm
,
T.
,
Ragai
,
I.
,
Mears
,
L.
, and
Roth
,
J. T.
,
2017
, “
A Review of Electrically-Assisted Manufacturing With Emphasis on Modeling and Understanding of the Electroplastic Effect
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
110801
.
11.
Dobras
,
D.
,
Bruschi
,
S.
,
Simonetto
,
E.
,
Rutkowska-Gorczyca
,
M.
, and
Ghiotti
,
A.
,
2020
, “
The Effect of Direct Electric Current on the Plastic Behavior of AA7075 Aluminum Alloy in Different States of Hardening
,”
Materials
,
14
(
1
), p.
73
.
12.
Roh
,
J.-H.
,
Seo
,
J.-J.
,
Hong
,
S.-T.
,
Kim
,
M.-J.
,
Han
,
H. N.
, and
Roth
,
J. T.
,
2014
, “
The Mechanical Behavior of 5052-H32 Aluminum Alloys Under a Pulsed Electric Current
,”
Int. J. Plast.
,
58
(
7
), pp.
84
99
.
13.
Hui
,
S.
,
Wang
,
Z.-J.
, and
Gao
,
T.-J.
,
2007
, “
Effect of High Density Electropulsing Treatment on Formability of TC4 Titanium Alloy Sheet
,”
Trans. Nonferrous Met. Soc. China
,
17
(
1
), pp.
87
92
.
14.
Bansal
,
D. G.
, and
Streator
,
J. L.
,
2011
, “
Effect of Operating Conditions on Tribological Response of Al–Al Sliding Electrical Interface
,”
Tribol. Lett.
,
43
(
4
), pp.
43
54
.
15.
Liu
,
X.-L.
,
Zheng
,
Y.-T.
,
Guan
,
X.
,
Deng
,
G.-H.
,
Xiao
,
Q.
,
Gao
,
M.-S.
,
Zhang
,
D.
,
Cao
,
H.-Y.
,
Wang
,
Z.
, and
Cao
,
Y.
,
2024
, “
An Investigation Revealed the Influence of the Different Magnitude and Duration of the Current-Impact on the Wear Property to the Carbon Skateboard/Stainless Steel Contact
,”
Wear
,
548
(
6
), p.
205366
.
16.
Gagnon
,
D.
,
Braunovic
,
M.
, and
Masounave
,
J.
,
2005
, “
Effect of Fretting Slip Amplitude on the Friction Behaviour of Electrical Contact Materials
,”
Proc. Proceedings of the Fifty-First IEEE Holm Conference on Electrical Contacts
,
Chicago, IL
,
Sept. 26–28
, IEEE, pp.
186
195
.
17.
Stolyarov
,
V.
, and
Misochenko
,
A.
,
2023
, “
A Pulsed Current Application to the Deformation Processing of Materials
,”
Materials
,
16
(
18
), p.
6270
.
18.
Zhou
,
Y.
,
Zhu
,
R.
,
Zuo
,
X.
, and
Xie
,
W.
,
2023
, “
Tribo-Electrical Behaviors of CNTs-MoS2/Cu Composites Under Sliding Electrical Contact With Brass
,”
Tribol. Int.
,
180
(
4
), p.
108207
.
19.
Wang
,
X.
,
Yao
,
P.
,
Li
,
Y.
,
Zhou
,
H.
,
Xiao
,
Y.
,
Deng
,
M.
,
Kang
,
L.
, and
Zhou
,
P.
,
2023
, “
Effects of Material Transfer Evolution on Tribological Behavior in CuCrZr Alloy Paired With 7075 Al Alloy Under Current-Carrying
,”
Tribol. Int.
,
179
(
1
), p.
107960
.
20.
Tyrer
,
N.
,
Yang
,
F.
,
Barber
,
G.
,
Pang
,
B.
, and
Wang
,
B.
,
2022
, “
Tribological Behavior of Electrical Connector Coatings Under Reciprocating Motion
,”
ASME J. Tribol.
,
144
(
9
), p.
091401
.
21.
Ma
,
Z.
,
Ji
,
H.
,
Huang
,
X.
,
Xiao
,
W.
, and
Tang
,
X.
,
2021
, “
Research on High Temperature Stamping Forming Performance and Process Parameters Optimization of 7075 Aluminum Alloy
,”
Materials
,
14
(
19
), p.
5485
.
22.
Ilinich
,
A.
, and
Luckey
,
S. G.
,
2014
, “On Modeling the Hot Stamping of High Strength Aluminum Sheet,” No. 0148-7191, SAE Technical Paper.
23.
Li
,
X.
,
Yan
,
X.
,
Zhang
,
Z.
,
Ren
,
M.
, and
Jia
,
H.
,
2021
, “
Determination of Hot Stamping Friction Coefficient of 7075 Aluminum
,”
Metals
,
11
(
7
), p.
1111
.
24.
Bao
,
J.
,
Bai
,
J.
,
Lv
,
S.
,
Shan
,
D.
,
Guo
,
B.
, and
Xu
,
J.
,
2020
, “
Interactive Effects of Specimen Size and Current Density on Tribological Behavior of Electrically-Assisted Micro-Forming in TC4 Titanium Alloy
,”
Tribol. Int.
,
151
(
11
), p.
106457
.
25.
Okazaki
,
K.
,
Kagawa
,
M.
, and
Conrad
,
H.
,
1980
, “
An Evaluation of the Contributions of Skin, Pinch and Heating Effects to the Electroplastic Effect in Titanium
,”
Mater. Sci. Eng.
,
45
(
2
), pp.
109
116
.
26.
Bumgardner
,
C. H.
,
Croom
,
B. P.
,
Song
,
N.
,
Zhang
,
Y.
, and
Li
,
X.
,
2020
, “
Low Energy Electroplasticity in Aluminum Alloys
,”
Mater. Sci. Eng. A
,
798
(
11
), p.
140235
.
27.
Li
,
S.
,
Yang
,
X.
,
Kang
,
Y.
,
Li
,
Z.
, and
Li
,
H.
,
2022
, “
Progress on Current-Carry Friction and Wear: An Overview From Measurements to Mechanism
,”
Coatings
,
12
(
9
), p.
1345
.
28.
Zhao
,
H.
,
Barber
,
G.
, and
Liu
,
J.
,
2001
, “
Friction and Wear in High Speed Sliding With and Without Electrical Current
,”
Wear
,
249
(
5–6
), pp.
409
414
.
29.
Ali
,
A.
,
Chiang
,
Y. W.
, and
Santos
,
R. M.
,
2022
, “
X-ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions
,”
Minerals
,
12
(
2
), p.
205
.
30.
Hajiabadi
,
M. G.
,
Zamanian
,
M.
, and
Souri
,
D.
,
2019
, “
Williamson-Hall Analysis in Evaluation of Lattice Strain and the Density of Lattice Dislocation for Nanometer Scaled ZnSe and ZnSe: Cu Particles
,”
Ceram. Int.
,
45
(
11
), pp.
14084
14089
.
31.
Lu
,
J.
,
Song
,
Y.
,
Zhou
,
P.
, and
Lin
,
J.
,
2020
, “
Rheological Behavior and Dynamic Softening Mechanism of AA7075 Sheet Under Isothermal Tensile Deformation
,”
J. Mater. Res. Technol.
,
9
(
5
), pp.
9784
9797
.
32.
Wang
,
B.-Y.
,
Lei
,
F.
,
Jing
,
Z.
, and
Huang
,
M.-D.
,
2015
, “
Effect of Friction Coefficient in Deep Drawing of AA6111 Sheet at Elevated Temperatures
,”
Trans. Nonferrous Met. Soc. China
,
25
(
7
), pp.
2342
2351
.
33.
Bellet
,
M.
,
Massoni
,
E.
, and
Chenot
,
J.-L.
,
1990
, “
Numerical Simulation of Thin Sheet Forming Processes by the Finite Element Method
,”
Eng. Computation.
,
7
(
1
), pp.
21
31
.
34.
Li
,
J.
,
Jiang
,
S.
,
Wu
,
H.
,
Zhu
,
W.
, and
Lu
,
C.
,
2011
, “
Study on Subsection Variable Blank Holder Force in Deep Drawing of Rectangular Parts
,”
Mater. Res. Innovations
,
15
(
Suppl 1
), pp.
S230
S233
.
35.
Grèze
,
R.
,
Manach
,
P.
,
Laurent
,
H.
,
Thuillier
,
S.
, and
Menezes
,
L.
,
2010
, “
Influence of the Temperature on Residual Stresses and Springback Effect in an Aluminium Alloy
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1094
1100
.
You do not currently have access to this content.